Skip to main content

Advertisement

Log in

PCR-based methods facilitate targeted gene manipulations and cloning procedures

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract.

Genome sequencing of a large number of organisms has provided a wealth of previously uncharacterized genes. Rapid functional analysis of these genes relies on efficient methods for targeted gene disruption. Gene replacement requires homologous recombination at the target locus. The efficiency of homologous recombination largely depends on the size of the flanking homology regions provided with the disruption cassette. Therefore, the ratio of targeted versus random integration into the genome governs the choice of tools applicable in any organism. PCR-based methods for gene disruption were first reported in Saccharomyces cerevisiae. Over the past years, additional tools have been developed for epitope- or green fluorescent protein-tagging of genes and for promoter exchanges. The attractiveness of these tools led to the generation of PCR modules for use in a wide variety of bacterial and fungal species. The high capacity of in vivo recombination of Sac. cerevisiae and Escherichia coli may also be used for heterologous DNA manipulations. This facilitates the generation of disruption cassettes for organisms that cannot be transformed with very short flanks of target homology regions. Furthermore, laborious cloning procedures, e.g. the generation of point mutations or the deletion of internal domains of genes, can be simplified by using these organisms as workhorses which will advance the general genetic toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7A, B.
Fig. 8.
Fig. 9A–C.

Similar content being viewed by others

References

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    CAS  PubMed  Google Scholar 

  • Aronson BD, Lindgren KM, Dunlap JC, Loros JJ (1994) An efficient method for gene disruption in Neurospora crassa. Mol Gen Genet 242:490–494

    CAS  PubMed  Google Scholar 

  • Asch DK, Kinsey JA (1990) Relationship of vector insert size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Mol Gen Genet 221:37–43

    CAS  PubMed  Google Scholar 

  • Bähler J, et al (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    PubMed  Google Scholar 

  • Bird D, Bradshaw R (1997) Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 255:219–225

    Article  CAS  PubMed  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    CAS  PubMed  Google Scholar 

  • Cannon RD, Jenkinson HF, Shepherd MG (1992) Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Mol Gen Genet 235:453–457

    CAS  PubMed  Google Scholar 

  • Davidson JF, Schiestl RH (2000) Mis-targeting of multiple gene disruption constructs containing hisG. Curr Genet 38:188–190

    CAS  PubMed  Google Scholar 

  • Enloe B, Diamond A, Mitchell AP (2000) A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182:5730–5736

    CAS  PubMed  Google Scholar 

  • Gerami-Nejad M, Berman J, Gale CA (2001) Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18:859–864

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Google Scholar 

  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    PubMed  Google Scholar 

  • Guldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    CAS  PubMed  Google Scholar 

  • Hamer L, et al (2001) Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci USA 98:5110–5115

    Article  CAS  PubMed  Google Scholar 

  • Hoogt R de, Luyten WH, Contreras R, Backer MD de (2000) PCR- and ligation-mediated synthesis of split-marker cassettes with long flanking homology regions for gene disruption in Candida albicans. Biotechniques 28:1112–1116

    PubMed  Google Scholar 

  • Larionov V, Kouprina N, Solomon G, Barrett JC, Resnick MA (1997) Direct isolation of human BRC2 gene by transformation associated recombination in yeast. Proc Natl Acad Sci USA 94:7384–7387

    CAS  PubMed  Google Scholar 

  • Longtine MS, et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    CAS  PubMed  Google Scholar 

  • Lorberg A, Schmitz HP, Gengenbacher U, Heinisch JJ (2003) KlROM2 encodes an essential GEF homologue in Kluyveromyces lactis. Yeast 20:611–624

    CAS  PubMed  Google Scholar 

  • Michel S, et al (2002) Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Mol Microbiol 46:269–280

    CAS  PubMed  Google Scholar 

  • Morschhäuser J, Michel S, Staib P (1999) Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 32:547–556

    PubMed  Google Scholar 

  • Panepinto JC, Oliver BG, Fortwendel JR, Smith DL, Askew DS, Rhodes JC (2003) Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of Invasive pulmonary aspergillosis. Infect Immun 71:2819–2826

    CAS  PubMed  Google Scholar 

  • Prein B, Natter K, Kohlwein SD (2000) A novel strategy for constructing N-terminal chromosomal fusions to green fluorescent protein in the yeast Saccharomyces cerevisiae. FEBS Lett 485:29–34

    CAS  PubMed  Google Scholar 

  • Sanchez-Martinez C, Perez-Martin J (2002) Site-specific targeting of exogenous DNA into the genome of Candida albicans using the FLP recombinase. Mol Genet Genomics 268:418–424

    Article  CAS  PubMed  Google Scholar 

  • Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    CAS  PubMed  Google Scholar 

  • Schade D, Walther A, Wendland J (2003) The development of a transformation system for the dimorphic plant pathogen Holleya sinecauda based on Ashyba gossypii DNA elements. Fungal Genet Biol (in press)

  • Schmitz HP, Jockel J, Block C, Heinisch JJ (2001) Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC eta for that of yeast Pkc1p. J Mol Biol 311:1–7

    Article  CAS  PubMed  Google Scholar 

  • Steensma HY, Ter Linde JJ (2001) Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 18:469–472

    CAS  PubMed  Google Scholar 

  • Steiner S, Wendland J, Wright MC, Philippsen P (1995) Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140:973–987

    CAS  PubMed  Google Scholar 

  • Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19:773–776

    CAS  PubMed  Google Scholar 

  • Umeyama T, Nagai Y, Niimi M, Uehara Y (2002) Construction of FLAG tagging vectors for Candida albicans. Yeast 19:611–618

    CAS  PubMed  Google Scholar 

  • Vidan S, Snyder M (2001) Large-scale mutagenesis: yeast genetics in the genome era. Curr Opin Biotechnol 12:28–34

    Google Scholar 

  • Wach A (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265

    Article  CAS  PubMed  Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    CAS  PubMed  Google Scholar 

  • Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P (2000) PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242:381–391

    Article  CAS  PubMed  Google Scholar 

  • Wilson RB, Davis D, Enloe BM, Mitchell AP (2000) A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16:65–70

    CAS  PubMed  Google Scholar 

  • Winzeler EA, et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Buchholz F, Muyers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

Work in my laboratory has been funded by the Deutsche Forschungsgemeinschaft (We2634/2-1, We2634/3-1), the Hans-Knöll Institute for Natural Products Research e.V., and the Friedrich-Schiller University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wendland.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendland, J. PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 44, 115–123 (2003). https://doi.org/10.1007/s00294-003-0436-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0436-x

Keywords.

Navigation