Skip to main content
Log in

Neue Einblicke in die Entstehung des Pankreaskarzinoms

Die Rolle der atypischen flachen Läsionen in der Karzinogenese

New insights into the origin of pancreatic cancer

Role of atypical flat lesions in pancreatic carcinogenesis

  • Referate Preisträger
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die Identifizierung und Charakterisierung von Krebsvorläuferläsionen hat bei verschiedenen malignen Neoplasien die Entwicklung von Screeningprogrammen ermöglicht, mit deren Hilfe die Mortalitätsrate reduziert werden konnte. Dies gilt bislang nicht für das pankreatische duktale Adenokarzinom (PDAC), das nach wie vor klinisch erst erkannt wird, wenn es invasiv geworden ist. Um die Entwicklung diagnostischer Verfahren zur Früherkennung des PDAC zu ermöglichen, ist eine genaue Kenntnis seiner Vorläuferläsionen notwendig. Die häufigste bislang bekannte Vorläuferläsion ist die pankreatische intraepitheliale Neoplasie (PanIN), die einen duktalen Phänotyp zeigt und einen duktalen Ursprung des PDAC nahe legt. Genetisch konstruierte Mausmodelle des PDAC zeigen jedoch, dass außer PanIN auch tubuläre Zellkomplexe (TC) zentroazinären Ursprungs durch eine azinär-duktale Metaplasie (ADM) atypische flache Läsionen (AFL) als alternative Vorläufer des PDAC ausbilden können. Die TC, AFL und murinen PanIN wurden von uns im Mausmodell eingehend morphologisch und molekulargenetisch charakterisiert und mit den menschlichen Pankreasläsionen verglichen. Auf der Basis unserer Befunde stellen wir ein duales Modell der Entwicklung des PDAC vor, das die Rolle der AFL als Vorläuferläsion berücksichtigt.

Abstract

The identification and characterization of precursor lesions is fundamental to develop screening programs for early diagnosis and treatment, aiming at reducing cancer-related mortality. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that becomes clinical apparent only in advanced stages. In order to enable screening procedures for early detection of PDAC, an exact characterization of precursor lesions is of utmost importance. Pancreatic intraepithelial neoplasias (PanIN) are the most frequent and best characterized precursors of PDAC and are lesions with a ductal phenotype thus indicating a ductal cell origin of PDAC. However, evidence from genetically engineered mouse models suggests that tubular complexes (TC) originating through a process of acinar-ductal metaplasia (ADM) form atypical flat lesions (AFL) that may represent an alternative pathway of pancreatic carcinogenesis. Based on a thorough morphological and genetic analysis of murine TC, AFL and PanIN and their human counterparts, a new dual model of pancreatic carcinogenesis is proposed taking into account the role of AFL as possible new precursors of PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adsay NV, Pierson C, Sarkar F et al (2001) Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol 25:26–42

    Article  PubMed  CAS  Google Scholar 

  2. Aichler M, Seiler C, Tost M et al (2012) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol 226:723–734

    Article  PubMed  CAS  Google Scholar 

  3. Basturk O, Khayyata S, Klimstra DS et al (2010) Preferential expression of MUC6 in oncocytic and pancreatobiliary types of intraductal papillary neoplasms highlights a pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis. Am J Surg Pathol 34:364–370

    Article  PubMed  Google Scholar 

  4. Bockman DE, Guo J, Buchler P et al (2003) Origin and development of the precursor lesions in experimental pancreatic cancer in rats. Lab Invest 83:853–859

    PubMed  Google Scholar 

  5. Brembeck FH, Schreiber FS, Deramaudt TB et al (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 63:2005–2009

    PubMed  CAS  Google Scholar 

  6. Brune K, Abe T, Canto M et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 30:1067–1076

    PubMed  Google Scholar 

  7. Campman SC, Fajardo MA, Rippon MB et al (1997) Adenosquamous carcinoma arising in a mucinous cystadenoma of the pancreas. J Surg Oncol 64:159–162

    Article  PubMed  CAS  Google Scholar 

  8. De La OJ, Murtaugh LC (2009) Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle 8:1860–1864

    Article  Google Scholar 

  9. Esposito I, Seiler C, Bergmann F et al (2007) Hypothetical progression model of pancreatic cancer with origin in the centroacinar-acinar compartment. Pancreas 35:212–217

    Article  PubMed  Google Scholar 

  10. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  PubMed  CAS  Google Scholar 

  11. Furukawa T, Kloppel G, Volkan Adsay N et al (2005) Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 447:794–799

    Article  PubMed  Google Scholar 

  12. Furukawa T, Kuboki Y, Tanji E et al (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161

    Article  PubMed  Google Scholar 

  13. Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  PubMed  CAS  Google Scholar 

  14. Habbe N, Shi G, Meguid RA et al (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A 105:18913–18918

    Article  PubMed  CAS  Google Scholar 

  15. Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  PubMed  CAS  Google Scholar 

  16. Jimenez RE, Z’graggen K, Hartwig W et al (1999) Immunohistochemical characterization of pancreatic tumors induced by dimethylbenzanthracene in rats. Am J Pathol 154:1223–1229

    Article  PubMed  CAS  Google Scholar 

  17. Kanda M, Matthaei H, WU J et al (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142:730–733 e739

    Article  PubMed  CAS  Google Scholar 

  18. Kloppel G, Bommer G, Ruckert K et al (1980) Intraductal proliferation in the pancreas and its relationship to human and experimental carcinogenesis. Virchows Arch A Pathol Anat Histol 387:221–233

    Article  PubMed  CAS  Google Scholar 

  19. Lim JE, Chien MW, Earle CC (2003) Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg 237:74–85

    Article  PubMed  Google Scholar 

  20. Luttges J, Zamboni G, Longnecker D et al (2001) The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol 25:942–948

    Article  PubMed  CAS  Google Scholar 

  21. Mammas IN, Spandidos DA (2012) George N. Papanicolaou (1883–1962) Fifty years after the death of a great doctor, scientist and humanitarian. J BUON 17:180–184

    PubMed  CAS  Google Scholar 

  22. Morris JPT, Cano DA, Sekine S et al (2010) Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120:508–520

    Article  PubMed  CAS  Google Scholar 

  23. Murtaugh LC, Leach SD (2007) A case of mistaken identity? Nonductal origins of pancreatic „ductal” cancers. Cancer Cell 11:211–213

    Article  PubMed  CAS  Google Scholar 

  24. Sarnaik AA, Saad AG, Mutema GK et al (2003) Osteoclast-like giant cell tumor of the pancreas associated with a mucinous cystadenocarcinoma. Surgery 133:700–701

    Article  PubMed  Google Scholar 

  25. Schlitter AM, Esposito I (2012) Pathology and classification of intraductal papillary mucinous neoplasms of the pancreas. Chirurg 83:110–115

    Article  PubMed  CAS  Google Scholar 

  26. Schmid RM, Kloppel G, Adler G et al (1999) Acinar-ductal-carcinoma sequence in transforming growth factor-alpha transgenic mice. Ann N Y Acad Sci 880:219–230

    Article  PubMed  CAS  Google Scholar 

  27. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  28. Sipos B, Frank S, Gress T et al (2009) Pancreatic intraepithelial neoplasia revisited and updated. Pancreatology 9:45–54

    Article  PubMed  CAS  Google Scholar 

  29. Stanger BZ, Stiles B, Lauwers GY et al (2005) Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8:185–195

    Article  PubMed  CAS  Google Scholar 

  30. Van Den Berg W, Tascilar M, Offerhaus GJ et al (2000) Pancreatic mucinous cystic neoplasms with sarcomatous stroma: molecular evidence for monoclonal origin with subsequent divergence of the epithelial and sarcomatous components. Mod Pathol 13:86–91

    Article  Google Scholar 

  31. Wagner M, Luhrs H, Kloppel G et al (1998) Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 115:1254–1262

    Article  PubMed  CAS  Google Scholar 

  32. Wu J, Matthaei H, Maitra A et al (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 3:92ra66

    Article  PubMed  CAS  Google Scholar 

  33. Zamboni G, Scarpa A, Bogina G et al (1999) Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol 23:410–422

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

The supplement this article is part of is not sponsored by the industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Esposito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, I., Konukiewitz, B., Schlitter, A. et al. Neue Einblicke in die Entstehung des Pankreaskarzinoms. Pathologe 33 (Suppl 2), 189–193 (2012). https://doi.org/10.1007/s00292-012-1673-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-012-1673-x

Schlüsselwörter

Keywords

Navigation