Skip to main content
Log in

Gellan gum/guar gum films incorporated with honey as potential wound dressings

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this article, the solvent casting technique was used to prepare wound dressing films based on honey incorporated gellan gum and guar gum biopolymers, and presented the effect of the honey concentration (in the range of 0–10 g on each film). The film structures were assessed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The physical properties of the films were investigated by swelling, degradation, mechanical tests, and water vapor transmission rate. The swelling capacity of the films decreased with an increase in the honey amount, and the presence of honey increased the degradation percentage of the films. The incorporation of honey significantly enhanced the tensile strength of the film, and the increase in honey concentration caused a decrease in the water vapor transmission rate values. The antioxidant activity of the films was determined by DPPH assay, and the films showed good antioxidant abilities. The biocompatibility of the films was evaluated by using an MTT assay with biofilm extract against human skin fibroblast cells, and the wound healing activity of the films was evaluated via in vitro scratch assay. The obtained outcomes showed that the synthesized non-cytotoxic and biocompatible films supported cell migration and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data available on request from the authors.

References

  1. Thomas D, Nath MS, Mathew N, Reshmy R, Philip E, Latha MS (2020) Alginate film modified with aloevera gel and cellulose nanocrystals for wound dressing application: Preparation, characterization and in vitro evaluation. J Drug Deliv Sci Technol 59:101894. https://doi.org/10.1016/j.jddst.2020.101894

    Article  CAS  Google Scholar 

  2. İnal M, Mülazımoğlu G (2019) Production and characterization of bactericidal wound dressing material based on gelatin nanofiber. Int J Biol Macromol 137:392–404. https://doi.org/10.1016/j.ijbiomac.2019.06.119

    Article  PubMed  CAS  Google Scholar 

  3. Gobi R, Ravichandiran P, Babu RS, Yoo DJ (2021) Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers 13(12):1962. https://doi.org/10.3390/polym13121962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bal-Öztürk A, Özkahraman B, Özbas Z, Yasayan G, Tamahkar E, Alarçin E (2021) Advancements and future directions in the antibacterial wound dressings—a review. J Biomed Mater Res 109:703–716. https://doi.org/10.1002/jbm.b.34736

    Article  CAS  Google Scholar 

  5. Naseri-Nosar M, Ziora ZM (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr Polym 189:379–398. https://doi.org/10.1016/j.carbpol.2018.02.003

    Article  PubMed  CAS  Google Scholar 

  6. Taher MA, Zahan KA, Rajaie MA, Ring LC, Ab Rashid S, Hamin NSMN, Nee TW, Yenn TW (2020) Nanocellulose as drug delivery system for honey as antimicrobial wound dressing. Mater Today: Proc 31:14–17. https://doi.org/10.1016/j.matpr.2020.01.076

    Article  CAS  Google Scholar 

  7. Savencu I, Iurian S, Porfire A, Bogdan C, Tomuță I (2021) Review of advances in polymeric wound dressing films. React Funct Polym 168:105059. https://doi.org/10.1016/j.reactfunctpolym.2021.105059

    Article  CAS  Google Scholar 

  8. Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMed 5:22. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  9. Oliveira JT, Santos TC, Martins L, Picciochi R, Marques AP, Castro AG, Neves NM, Mano JF, Reis RL (2010) Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation. Tissue Eng Part A 16(1):343–353. https://doi.org/10.1089/ten.tea.2009.0117

    Article  PubMed  CAS  Google Scholar 

  10. Mahmood H, Khan IU, Asif M, Khan RU, Asghar S, Khalid I, Khalid SH, Irfan M, Rehman F, Shahzad Y, Yousaf AM, Younus A, Niazi ZR, Asim M (2021) In vitro and in vivo evaluation of gellan gum hydrogel films: assessing the co impact of therapeutic oils and ofloxacin on wound healing. Int J Biol Macromol 166:483–495. https://doi.org/10.1016/j.ijbiomac.2020.10.206

    Article  PubMed  CAS  Google Scholar 

  11. Sharma R, Pahwa R, Ahuja M (2021) Iodine-loaded poly(silicic acid) gellan nanocomposite mucoadhesive film for antibacterial application. J Appl Polym Sci 138(2):49679. https://doi.org/10.1002/app.49679

    Article  CAS  Google Scholar 

  12. Ismail NA, Amin KAM, Majid FAA, Razali MH (2019) Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Eng C 103:109770. https://doi.org/10.1016/j.msec.2019.109770

    Article  CAS  Google Scholar 

  13. Razali MH, Ismail NA, Amin KAM (2020) Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: Effect of TiO2 nanotubes concentration. Int J Biol Macromol 153:1117–1135. https://doi.org/10.1016/j.ijbiomac.2019.10.242

    Article  PubMed  CAS  Google Scholar 

  14. Ismail NA, Mohamad SF, Ibrahim MA, Amin KAM (2014) Evaluation of gellan gum film containing virgin coconut oil for transparent dressing materials. Adv Biomater. https://doi.org/10.1155/2014/351248

    Article  Google Scholar 

  15. Özkahraman B, Özbaş Z, Bayrak G, Tamahkar E, Perçin I, Kılıç-Süloğlu A, Boran F (2021) Characterization and antibacterial activity of gelatin–gellan gum bilayer wound dressing. Int J Polym Mater Polym Biomater 71:1240–1251. https://doi.org/10.1080/00914037.2021.1960341

    Article  CAS  Google Scholar 

  16. Muktar MZ, Ismail WIW, Razak SIA, Razali MH, Amin KAM (2018) Accelerated wound healing of physically cross linked gellan gum-virgin coconut oil hydrogel containing manuka honey. ASM Sci J Special Issue AiMS2018 11(1):166–182

    Google Scholar 

  17. Verma D, Sharma SK (2021) Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 181:653–671. https://doi.org/10.1016/j.ijbiomac.2021.03.087

    Article  PubMed  CAS  Google Scholar 

  18. Bhubhanil S, Talodthaisong C, Khongkow M, Namdee K, Wongchitrat P, Yingmema W, Hutchison JA, Lapmanee S, Kulchat S (2021) Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci Rep 11:21836. https://doi.org/10.1038/s41598-021-01262-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bajpai A, Raj V (2020) Hydrophobically modified guar gum films for wound dressing. Polym Bull 78:4109–4128. https://doi.org/10.1007/s00289-020-03302-4

    Article  CAS  Google Scholar 

  20. Khan MUA, Raza MA, Razak SIA, Kadir MRA, Haider A, Shah SA, Yusof AHM, Shakir I, Aftab S (2020) Novel functional antimicrobial and biocompatible arabinoxylan/guar gum hydrogel for skin wound dressing applications. J Tissue Eng Regen Med 14:1488–1501. https://doi.org/10.1002/term.3115

    Article  PubMed  CAS  Google Scholar 

  21. Koyyada A, Orsu P (2021) Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers. J Drug Deliv Sci Technol 63:102431. https://doi.org/10.1016/j.jddst.2021.102431

    Article  CAS  Google Scholar 

  22. Talodthaisong C, Boonta W, Thammawithan S, Patramanon R, Kamonsutthipaijit N, Hutchison JA, Kulchat S (2020) Composite guar gum-silver nanoparticle hydrogels as self-healing, injectable, and antibacterial biomaterials. Mater Today Commun 24:100992. https://doi.org/10.1016/j.mtcomm.2020.100992

    Article  CAS  Google Scholar 

  23. Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, Jabeen F, Mohamad MR, Jusoh N (2021) Development of antibacterial, degradable and pH-responsive chitosan/guar gum/polyvinyl alcohol blended hydrogels for wound dressing. Molecules 26(19):5937. https://doi.org/10.3390/molecules26195937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ansari M, Meftahizadeh H, Eslami H (2022) Fabrication of multifunctional chitosan–guar–Aloe vera gel to promote wound healing. Chem Pap 76:1513–1524. https://doi.org/10.1007/s11696-021-01958-4

    Article  CAS  Google Scholar 

  25. Kim JS, Kim J, Lee SM, Woo MR, Kim DW, Kim JO, Choi H-G, Jin SG (2022) Development of guar gum-based dual-layer wound dressing containing Lactobacillus plantarum: Rapid recovery and mechanically flexibility. Int J Biol Macromol 221:1572–1579. https://doi.org/10.1016/j.ijbiomac.2022.09.049

    Article  PubMed  CAS  Google Scholar 

  26. Maroufi LY, Ghorbani M (2022) Development of a novel antibacterial hydrogel scaffold based on guar gum/poly (methylvinylether-alt-maleic acid) containing cinnamaldehyde-loaded chitosan nanoparticles. J Polym Environ 30:431–442. https://doi.org/10.1007/s10924-021-02216-0

    Article  CAS  Google Scholar 

  27. Caldera-Villalobos M, Cabrera-Munguia DA, Becerra-Rodriguez JJ, Claudio-Rizo JA (2022) Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal–organic frameworks. RSC Adv 12:3672–3686. https://doi.org/10.1039/D1RA08824F

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shamloo A, Aghababaie Z, Afjoul H, Jami M, Bidgoli MR, Vossoughi M, Ramazani A, Kamyabhesari K (2021) Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study. Int J Pharm 592:120068. https://doi.org/10.1016/j.ijpharm.2020.120068

    Article  PubMed  CAS  Google Scholar 

  29. Taher MA, Zahan KA, Rajaie MA, Leong CR, Rashid SA, Hamin NSMN, Wen Nee T, Tong WY (2020) Nanocellulose as drug delivery system for honey as antimicrobial wound dressing. Mater Today: Proc 31:14–17. https://doi.org/10.1016/j.matpr.2020.01.076

    Article  CAS  Google Scholar 

  30. Ullah A, Ullah S, Khan MQ, Hashmi M, Nam PD, Kato Y, Tamada Y, Kim IS (2020) Manuka honey incorporated cellulose acetate nanofibrous mats: fabrication and in vitro evaluation as a potential wound dressing. Int J Biol Macromol 155:479–489. https://doi.org/10.1016/j.ijbiomac.2020.03.237

    Article  PubMed  CAS  Google Scholar 

  31. Naeimi A, Payandeh M, Ghara AR, Ghadi FE (2020) In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym 240:116315

    Article  PubMed  CAS  Google Scholar 

  32. Ghorbani M, Ramezani S, Rashidi MR (2021) Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloids Surf A: Physicochem Eng Asp 621:126615. https://doi.org/10.1016/j.colsurfa.2021.126615

    Article  CAS  Google Scholar 

  33. Nezhad-Mokhari P, Javanbakht S, Asadi N, Ghorbani M, Milani M, Hanifehpour Y, Gholiadeh P, Akbarzadeh A (2021) Recent advances in honey-based hydrogels for wound healing applications: towards natural therapeutics. J Drug Deliv Sci Technol 66:102789. https://doi.org/10.1016/j.jddst.2021.102789

    Article  CAS  Google Scholar 

  34. Tang Y, Lan X, Liang C, Zhong Z, Xie R, Zhou Y, Miao X, Wang H, Wang W (2019) Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym 219:113–120. https://doi.org/10.1016/j.carbpol.2019.05.004

    Article  PubMed  CAS  Google Scholar 

  35. El-Kased RF, Amer RI, Attia D, Elmazar MM (2017) Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci Rep 7:9692. https://doi.org/10.1038/s41598-017-08771-8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rafati Z, Sirousazar M, Hassan ZM, Kheiri F (2020) Honey-loaded egg white/poly(vinyl alcohol)/clay bionanocomposite hydrogel wound dressings: In vitro and in vivo evaluations. J Polym Environ 28:32–46. https://doi.org/10.1007/s10924-019-01586-w

    Article  CAS  Google Scholar 

  37. Katoch A, Choudhury AR (2020) Understanding the rheology of novel guar-gellan gum composite hydrogels. Mater Lett 263:127234. https://doi.org/10.1016/j.matlet.2019.127234

    Article  CAS  Google Scholar 

  38. Tamahkar E, Özkahraman B, Özbaş Z, Izbudak B, Yarımcan F, Boran F, Bal-Öztürk A (2021) Aloe vera-based antibacterial porous sponges for wound dressing applications. J Porous Mater 28:741–750. https://doi.org/10.1007/s10934-020-01029-1

    Article  CAS  Google Scholar 

  39. Özkahraman B, Tamahkar E, İdil N, Kılıç Suloglu A, Perçin I (2021) Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release. Drug Dev Res 82(2):241–250. https://doi.org/10.1002/ddr.21747

    Article  PubMed  CAS  Google Scholar 

  40. Bal-Öztürk A, Torkay G, Alarçin E, Özbaş Z, Özkahraman B (2022) The effect of thiol functional groups on bovine serum albumin/chitosan buccal mucoadhesive patches. J Drug Deliv Sci Technol 74:103493. https://doi.org/10.1016/j.jddst.2022.103493

    Article  CAS  Google Scholar 

  41. Kocaaga B, Kurkcuoglu O, Tatlier M, Batirel S, Guner FS (2019) Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. J Appl Polym Sci 136(24):47640. https://doi.org/10.1002/app.47640

    Article  CAS  Google Scholar 

  42. Goupy P, Dufour C, Loonis M, Dangles O (2003) Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J Agric Food Chem 51:615–622. https://doi.org/10.1021/jf025938l

    Article  PubMed  CAS  Google Scholar 

  43. Li Q, Wei L, Zhang J, Gu G, Guo Z (2019) Significantly enhanced antioxidant activity of chitosan through chemical modification with coumarins. Polym Chem 10:1480–1488. https://doi.org/10.1039/C8PY01790E

    Article  CAS  Google Scholar 

  44. Bal-Ozturk A, Karal-Yilmaz O, Akguner ZP, Aksu S, Tas A, Olmez H (2019) Sponge-like chitosan-based nanostructured antibacterial material as a topical hemostat. J Appl Polym Sci 136:47522. https://doi.org/10.1002/app.47522

    Article  CAS  Google Scholar 

  45. Yaşayan G, Karaca G, Akgüner ZP, Bal-Öztürk A (2021) Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. Int J Polym Mater Polym Biomater 70:623–635. https://doi.org/10.1080/00914037.2020.1740993

    Article  CAS  Google Scholar 

  46. Özen N, Özbaş Z, İzbudak B, Emik S, Özkahraman B, Bal-Öztürk A (2022) Boric acid-impregnated silk fibroin/gelatin/hyaluronic acid-based films for improving the wound healing process. J Appl Polym Sci 139(9):51715. https://doi.org/10.1002/app.51715

    Article  CAS  Google Scholar 

  47. Özkahraman B, Özbaş Z (2020) Removal of Al(III) ions using gellan gum-acrylic acid double network hydrogel. J Polym Environ 28:689–698. https://doi.org/10.1007/s10924-019-01636-3

    Article  CAS  Google Scholar 

  48. Yang F, Xia S, Tan C, Zhang X (2013) Preparation and evaluation of chitosan–calcium–gellan gum beads for controlled release of protein. Eur Food Res Technol 237:467–479. https://doi.org/10.1007/s00217-013-2021-y

    Article  CAS  Google Scholar 

  49. Jana P, Mitra T, Selvaraj TKR, Gnanamani A, Kundu PP (2016) Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydr Polym 153:573–581. https://doi.org/10.1016/j.carbpol.2016.07.053

    Article  PubMed  CAS  Google Scholar 

  50. Mudgil D, Barak S, Khatkar BS (2012) X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromol 50:1035–1039. https://doi.org/10.1016/j.ijbiomac.2012.02.031

    Article  PubMed  CAS  Google Scholar 

  51. Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F (2015) Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem 170:234–240. https://doi.org/10.1016/j.foodchem.2014.08.040

    Article  PubMed  CAS  Google Scholar 

  52. Yang X, Fan L, Ma L, Wang Y, Lin S, Yu F, Pan X, Luo G, Zhang D, Wang H (2017) Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater Des 119:76–84. https://doi.org/10.1016/j.matdes.2017.01.023

    Article  CAS  Google Scholar 

  53. Sarhan WA, Azzazy HME, El-Sherbiny IM (2016) The effect of increasing honey concentration on properties of the honey/polyvinyl alcohol/chitosan nanofibers. Mater Sci Eng C 67:276–284. https://doi.org/10.1016/j.msec.2016.05.006

    Article  CAS  Google Scholar 

  54. Radoor S, Karayil J, Jayakumar A, Siengchin S, Parameswaranpillai J (2021) A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: synthesis, characterization and antibacterial property. J Polym Res 28:82. https://doi.org/10.1007/s10965-021-02415-2

    Article  CAS  Google Scholar 

  55. Özbaş Z, Özkahraman B, Bayrak G, Süloğlu-Kılıç A, Perçin I, Boran F, Tamahkar E (2021) Poly(vinyl alcohol)/(hyaluronic acid-g-kappa-carrageenan) hydrogel as antibiotic-releasing wound dressing. Chem Pap 75:6591–6600. https://doi.org/10.1007/s11696-021-01824-3

    Article  CAS  Google Scholar 

  56. Sasikala L, Rathinamoorthy R, Dhurai B (2018) Optimization of process conditions for chitosan-manuka honey film as wound contact layer for wound dressings. Wound Med 23:11–21. https://doi.org/10.1016/j.wndm.2018.09.007

    Article  Google Scholar 

  57. Abraham SA, Yashavanth G, Deveswaran R, Bharath S, Azamathulla M, Shanmuganathan S (2022) Honey based hydrogel as delivery system for wound healing. Mater Today: Proc 49:1709–1718. https://doi.org/10.1016/j.matpr.2021.07.488

    Article  CAS  Google Scholar 

  58. Kanimozhi S, Kathiresan G, Kathalingam A, Kim H-S, Doss MNR (2020) Organic nanocomposite Band-Aid for chronic wound healing: a novel honey-based nanofibrous scaffold. Appl Nanosci 10:1639–1652. https://doi.org/10.1007/s13204-019-01247-3

    Article  CAS  Google Scholar 

  59. Fan W, Zhang Z, Liu Y, Wang J, Li Z, Wang M (2021) Shape memory polyacrylamide/gelatin hydrogel with controllable mechanical and drug release properties potential for wound dressing application. Polymer 226:123786. https://doi.org/10.1016/j.polymer.2021.123786

    Article  CAS  Google Scholar 

  60. Mohd Azam NAN, Amin KAM (2017) The physical and mechanical properties of gellan gum films incorporated manuka honey as wound dressing materials. IOP Conf Ser: Mater Sci Eng 209:012027. https://doi.org/10.1088/1757-899X/209/1/012027

    Article  Google Scholar 

  61. Minsart M, Vlierberghe SV, Dubruel P, Mignon A (2022) Commercial wound dressings for the treatment of exuding wounds: an in-depth physico-chemical comparative study. Burns Trauma. https://doi.org/10.1093/burnst/tkac024

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu Y-B, Yu S-H, Mi F-L, Wu C-W, Shyu S-S, Peng C-K, Chao A-C (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440. https://doi.org/10.1016/j.carbpol.2004.05.013

    Article  CAS  Google Scholar 

  63. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611. https://doi.org/10.1016/j.carbpol.2013.01.076

    Article  PubMed  CAS  Google Scholar 

  64. Saberian M, Seyedjafari E, Zargar SJ, Mahdavi FS, Sanaei-rad P (2021) Fabrication and characterization of alginate/chitosan hydrogel combined with honey and Aloe vera for wound dressing applications. J Appl Polym Sci 138:51398. https://doi.org/10.1002/app.51398

    Article  CAS  Google Scholar 

  65. Wu L-T, Tsai I-L, Ho Y-C, Hang Y-H, Lin C, Tsai M-L, Mi F-L (2021) Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydr Polym 254:117410. https://doi.org/10.1016/j.carbpol.2020.117410

    Article  PubMed  CAS  Google Scholar 

  66. Wang MO, Etheridge JM, Thompson JA, Vorwald CE, Dean D, Fisher JP (2013) Evaluation of the in vitro cytotoxicity of cross-linked biomaterials. Biomacromol 14:1321–1329. https://doi.org/10.1021/bm301962f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GTorkay would like to acknowledge the financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) 2210/A General Domestic Graduate Scholarship Program (App No: 1649B022101483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Özbaş.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal-Öztürk, A., Torkay, G., İdil, N. et al. Gellan gum/guar gum films incorporated with honey as potential wound dressings. Polym. Bull. 81, 1211–1228 (2024). https://doi.org/10.1007/s00289-023-04763-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04763-z

Keywords

Navigation