Skip to main content

Advertisement

Log in

Green biopolysaccharides and its utilisation as biodegradable material in diverse fields: a review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

About 70 percent of the entire world is covered by seas and oceans thereby maintaining a more diverse ecosystem compared to that of the landmass. Apart from being the key role player in ecological functions, it also plays an important role in the following areas of food security, feeds for livestock, raw materials for medicine, building materials, natural defence against natural calamities and many more. This review mainly focuses on the different types of versatile marine biopolysaccharides and their uses in various sectors, including the food industry, pharmaceutical industry, bioremediation, wastewater treatment, cosmetics, biomedical applications, agriculture and catalysis. The marine biopolysaccharides of focus in this review article are agar, alginate, carrageenan, chitin, chitosan and glycosaminoglycans which includes heparan sulphate, chondroitin sulphate and also marine-based sources of natural bioprotein collagen and its applications. Emphasis is given to the nanomaterials which can be obtained from the above-mentioned marine biopolysaccharides and its application in various fields. Overall, the report covers the important biopolysaccharides obtained from marine resources that are abundant in nature, which can be of more interest shortly. The review article covers the future aspects of applications of marine biopolysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luz GM, Mano JF (2010) Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Compos Sci Technol 70(13):1777–1788

    CAS  Google Scholar 

  2. Paterson I, Anderson EA (2005) The renaissance of natural products as drug candidates. Science 310(5747):451–453

    PubMed  Google Scholar 

  3. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67(8):1216–1238

    CAS  PubMed  Google Scholar 

  4. Dembitsky VM, Gloriozova TA, Poroikov VV (2005) Novel antitumor agents: marine sponge alkaloids, their synthetic analogs and derivatives. Mini Rev Med Chem 5(3):319–336

    CAS  PubMed  Google Scholar 

  5. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28(2):196–268

    CAS  PubMed  Google Scholar 

  6. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26(2):170–244

    CAS  PubMed  Google Scholar 

  7. Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33(7):523–531

    CAS  PubMed  Google Scholar 

  8. d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13(9):2069–2106

    PubMed  Google Scholar 

  9. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    CAS  Google Scholar 

  10. Joshi S, Eshwar S, Jain V (2019) Marine polysaccharides: biomedical and tissue engineering applications. In: Choi AH, Ben-Nissan B (eds) Marine-derived biomaterials for tissue engineering applications, Springer Series in Biomaterials Science and Engineering. Springer, Singapore

    Google Scholar 

  11. Raveendran S, Yoshida Y, Maekawa T, Kumar DS (2013) Pharmaceutically versatile sulfated polysaccharide based bionano platforms. Nanomed Nanotechnol Biol Med 9(5):605–626

    CAS  Google Scholar 

  12. Zhang B, Lan W, Xie J (2022) Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: a review. Int J Biol Macromol 223:1539–1555

    CAS  PubMed  Google Scholar 

  13. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  14. Peniche C, Arguelles-Monal W, Goycoolea FM (2008) Chitin and chitosan: major sources, properties and applications. In: Gandini MNBBTM (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  15. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226

    CAS  Google Scholar 

  16. Muanprasat C, Chatsudthipong V (2017) Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther 170:80–97

    CAS  PubMed  Google Scholar 

  17. Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS (2003) Efficient gene delivery by urocanic acid-modified chitosan. J Control Release 93(3):389–402

    CAS  PubMed  Google Scholar 

  18. Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14(6):1276–1289

    PubMed  PubMed Central  Google Scholar 

  19. Yusof NL, Lim LY, Khor E (2001) Preparation and characterization of chitin beads as a wound dressing precursor. J Biomed Mater Res 54(1):59–68

    CAS  PubMed  Google Scholar 

  20. Mezzana P (2008) Clinical efficacy of a new chitin nanofibrils-based gel in wound healing. Acta Chir Plast 50(3):81–84

    CAS  PubMed  Google Scholar 

  21. Singh D, Singh R (2012) Papain incorporated wound debridement sterilized by gamma radiation. Radiat Phys Chem 81(11):1781–1785

    CAS  Google Scholar 

  22. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179

    CAS  Google Scholar 

  23. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641678

    Google Scholar 

  24. Silva SS, Santos MI, Coutinho OP, Mano JF, Reis RL (2005) Physical properties and biocompatibility of chitosan/soy blended membranes. J Mater Sci Mater Med 16(6):575–579

    CAS  PubMed  Google Scholar 

  25. Malafaya PB, Pedro AJ, Peterbauer A, Gabriel C, Redl H, Reis RL (2005) Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med 16(12):1077–1085

    CAS  Google Scholar 

  26. Tuzlakoglu K, Alves CM, Mano JF, Reis RL (2004) Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci 4(8):811–819

    CAS  PubMed  Google Scholar 

  27. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    CAS  Google Scholar 

  28. Yi SS, Noh JM, Lee YS (2009) Amino acid modified chitosan beads: improved polymer supports for immobilization of lipase from Candida rugosa. J Mol Catal B Enzym 57:123–129

    CAS  Google Scholar 

  29. Yin B, Yuan R, Chai Y, Chen S, Cao S, Xu Y, Fu P (2008) Amperometric glucose biosensors based on layer-by-layer assembly of chitosan and glucose oxidase on the Prussian blue modified gold electrode. Biotechnol Lett 30:317–322

    CAS  PubMed  Google Scholar 

  30. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73(2–3):255–267

    CAS  PubMed  Google Scholar 

  31. El-Aidie SAM (2018) A review on chitosan: ecofriendly multiple potential applications in the food industry. Int J Adv Life Sci Res 1(1):1–14

    Google Scholar 

  32. Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A (2005) Effect of chitosan on weight loss in overweight and obese individuals: a systematic review of randomized controlled trials. Obes Rev 6:35–42

    CAS  PubMed  Google Scholar 

  33. Xie WM, Xu PX, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorganic and Med Chem Lett 11(13):1699–1701

    CAS  Google Scholar 

  34. Hadwiger LA, Klosterman SJ, Choi JJ (2002) The mode of action of chitosan and itsoligomers in inducing plant promoters and developing disease resistance in plants. In: Suchiva K, Chandrkrachang S, Methacanon P, Peter MG (ed) Advances in chitin science, Bangkok

  35. Ben-Shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003) Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285–290

    CAS  Google Scholar 

  36. Photchanachai S, Singkaew J, Thamthong J (2006) Effects of chitosan seed treatment on Colletotrichum sp. and seedling growth of chili cv. ‘Jinda.’ Acta Hortic 712:585–590

    Google Scholar 

  37. Cheng WP, Chi FH, Yu RF, Lee YC (2005) Using chitosan as a coagulant in recovery of organic matters from the mash and lauter wastewater of brewery. J Polym Environ 13:383–388

    CAS  Google Scholar 

  38. Chi FH, Cheng YP (2006) Use of chitosan as coagulant to treat waste water from milk processing plant. J Polym Environ 14:411–417

    CAS  Google Scholar 

  39. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430

    CAS  Google Scholar 

  40. Siew CK, Williams PA, Young NWG (2005) New insights into the mechanism of gelation of alginate and pectin: charge annihilation and reversal mechanism. Biomacromol 6(2):963–969

    CAS  Google Scholar 

  41. Anh NT, Phu DV, Duy NN, Du BD, Hien NQ (2010) Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement. Radiat Phys Chem 79(4):405–408

    Google Scholar 

  42. Aguilera DA, Tanchoux N, Fochi M, Bernardi L (2020) Blue chemistry Marine polysaccharide biopolymers in asymmetric catalysis: challenges and opportunities. Eur J Org Chem 25:3779–3795

    Google Scholar 

  43. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58(4):187–205

    CAS  Google Scholar 

  44. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77(2):167–180

    CAS  Google Scholar 

  45. Mangione MR, Giacomazza D, Bulone D, Martorana V, Cavallaro G, San Biagio PL (2005) K+ and Na+ effects on the gelation properties of k-Carrageenan. Biophys Chem 113(2):129–135

    CAS  PubMed  Google Scholar 

  46. Van de Velde F, Lourenco ND, Pinheiro HM, Bakker M (2002) Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal 344(8):815–835

    Google Scholar 

  47. Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulphated polysaccharides derived from marine algae. Carbohydr Polym 84(1):14–21

    CAS  Google Scholar 

  48. Neamtu B, Barbu A, Negrea MO, Berghea-Neamt CS, Popescu D, Zahan M, Miresan V (2022) Carrageenan-based compounds as wound healing materials. Int J Mol Sci 23:9117

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stiles J, Guptill-Yoran L, Moore GE, Pogranichniy RM (2008) Effects of λ-carrageenan on in vitro replication of feline herpesvirus and on experimentally induced herpetic conjunctivitis in cats. Investig Ophthalmol Vis Sci 49:1496–1501

    Google Scholar 

  50. Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H (2008) Iota-carrageenan is a potent inhibitor of rhinovirus infection. Virol J 5:1–13

    Google Scholar 

  51. Carlucci MJ, Scolaro LA, Noseda MD, Cerezo AS, Damonte EB (2004) Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antivir Res 64(2):137–141

    CAS  PubMed  Google Scholar 

  52. Rocha de Souza MC, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19(2):153–160

    CAS  PubMed  Google Scholar 

  53. Yuan H, Song J (2005) Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. J Appl Phycol 17(1):7–13

    CAS  Google Scholar 

  54. Yuan H, Song J, Li X, Li N, Dai J (2006) Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett 243:228–234

    CAS  PubMed  Google Scholar 

  55. Zhou G, Sheng W, Yao W, Wang C (2006) Effect of low molecular lambda- carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 53(2):129–134

    CAS  PubMed  Google Scholar 

  56. Armisen R, Galatas F, Hispanagar SA (2009) Agar. In: Phillips GO, Williams PA (eds) Handbook of Hydrocolloids, 2nd edn. Woodhead Publishing/CRC Press, Boca Raton, Washington DC

    Google Scholar 

  57. Datta KKR, Srinivasan B, Balaram H, Eswaramoorthy M (2008) Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites. J Chem Sci 120(6):579–586

    CAS  Google Scholar 

  58. Kattumuri V, Chandrasekhar M, Guha S, Raghuraman K, Katti KV, Ghosh K, Patel RJ (2006) Agarose stabilized gold nanoparticles for surface-enhanced Raman spectroscopic detection of DNA nucleosides. Appl Phys Lett 88(15):153113–153114

    Google Scholar 

  59. Lahrsen E, Schoenfeld AK, Alban S (2018) Size-dependent pharmacological activities of differently degraded fucoidan fractions from Fucus vesiculosus. Carbohydr Polym 189:162–168

    CAS  PubMed  Google Scholar 

  60. Venkatesan J, Lowe B, Anil S, Manivasagan P, Kheraif AAA, Kang KH, Kim SK (2015) Seaweed polysaccharides and their potential biomedical applications. Starch/Staerke 67(5–6):381–390

    CAS  Google Scholar 

  61. Wang J, Geng L, Yue Y, Zhang Q (2019) Use of fucoidan to treat renal diseases: a review of 15 years of clinic studies. In: Zhang L (ed) Progress in molecular biology and translational science. Academic Press, Cambridge, USA

    Google Scholar 

  62. Barbosa AI, Coutinho AJ, Costa Lima SA, Reis S (2019) Marine polysaccharides in pharmaceutical applications: fucoidan and chitosan as key players in the drug delivery match field. Mar Drugs 17(12):654

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamada S, Sugahara K, Ozbek S (2011) Evolution of glycosaminoglycans: comparative biochemical study. Commun Integr Biol 4(2):150–158

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gulati K, Poluri KM (2016) Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 33(1):1–17

    CAS  PubMed  Google Scholar 

  65. Higashi K, Takeuchi Y, Mukuno A, Tomitori H, Miya M, Linhardt RJ, Toida T (2015) Composition of glycosaminoglycans in elasmobranchs including several deep-sea sharks: identification of chondroitin/dermatan sulfate from the dried fins of Isurus oxyrinchus and Prionace glauca. PLoS ONE 10(3):1–15

    Google Scholar 

  66. Sugahara K, Yamada S (2008) Microsequencing of functional chondroitin sulfate oligosaccharides. In: Taniguchi N, Suzuki A, Ito Y, Narimatsu H, Kawasaki T, Hase S (eds) Experimental glycoscience. Springer, Tokyo

    Google Scholar 

  67. Saravanan R, Shanmugam A (2010) Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (Linne) using chromatography. Appl Biochem Biotechnol 160:791–799

    CAS  PubMed  Google Scholar 

  68. Kozlowski EO, Pavao MSG, Borsig L (2011) Ascidian dermatan sulfates attenuate metastasis, inflammation and thrombosis by inhibition of P-selectin. J Thromb Haemost 9(9):1807–1815

    CAS  PubMed  Google Scholar 

  69. Rocha LAG, Martins RCL, Werneck CC, Feres-Filho EJ, Silva LCF (2000) Human gingival glycosaminoglycans in cyclosporin-induced overgrowth. J Periodontal Res 35(3):158–164

    CAS  PubMed  Google Scholar 

  70. Valcarcel J, Novoa-Carballal R, Perez-Martin RI, Reis RL, Vazquez JA (2017) Glycosaminoglycans from marine sources as therapeutic agents. Biotechnol Adv 35(6):711–725

    CAS  PubMed  Google Scholar 

  71. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13(5):612–620

    CAS  PubMed  Google Scholar 

  72. Zou Z, Wei M, Fang J, Dai W, Sun T, Liu Q, Gong G, Liu Y, Song S, Ma F, Wang L, Huang L, Wang Z (2020) Preparation of chondroitin sulfates with different molecular weights from bovine nasal cartilage and their antioxidant activities. Int J Biol Macromol 152:1047–1055

    PubMed  Google Scholar 

  73. Campo GM, Avenoso A, Campo S, Nastasi G, Traina P, D’Ascola A (2008) Chondroitin-4-sulphate reduced oxidative injury in caerulein-induced pancreatitis in mice: the involvement of NF-κB translocation and apoptosis activation. Exp Biol Med 233(6):741–752

    CAS  Google Scholar 

  74. Krichen F, Volpi N, Sila A, Maccari F, Mantovani V, Galeotti F, Ellouz-Chaabouni S, Bougatef A (2017) Purification, structural characterization and antiproliferative properties of chondroitin sulfate/dermatan sulfate from tunisian fish skins. Int J Biol Macromol 95:32–39

    CAS  PubMed  Google Scholar 

  75. Palhares LCGF, Brito AS, de Lima MA, Nader HB, London JA, Barsukov IL, Andrade GPV, Yates EA, Chavante SFA (2019) A further unique chondroitin sulfate from the shrimp Litopenaeus vannamei with antithrombin activity that modulates acute inflammation. Carbohydr Polym 222:115031

    CAS  PubMed  Google Scholar 

  76. Maccari F, Galeotti F, Volpi N (2015) Isolation and structural characterization of chondroitin sulfate from bony fishes. Carbohydr Polym 129:143–147

    CAS  PubMed  Google Scholar 

  77. Majima M, Takagaki K, Sudo SI, Yoshihara S, Kudo Y, Yamagishi S (2001) Effect of proteoglycan on experimental colitis. Int Congress 1223:221–224

    CAS  Google Scholar 

  78. Mendis E, Rajapakse N, Byun HG, Kim SK (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 77(17):2166–2178

    CAS  PubMed  Google Scholar 

  79. Swatschek D, Schatton W, Kellermann J, Muller WE, Kreuter J (2002) Marine sponge collagen: Isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53(1):107–113

    CAS  PubMed  Google Scholar 

  80. Song E, Kim SY, Chun T, Byun HJ, Lee YM (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27(15):2951–2961

    CAS  PubMed  Google Scholar 

  81. Pustlauk W, Paul B, Gelinsky M, Bernhardt A (2016) Jellyfish collagen and alginate: combined marine materials for superior chondrogenesis of Hmsc. Mater Sci Eng C Mater Biol Appl 64:190–198

    CAS  PubMed  Google Scholar 

  82. Mathew-Steiner SS, Roy S, Sen CK (2021) Collagen in Wound Healing. Bioengineering 8(5):63

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2(1):2–11

    PubMed  PubMed Central  Google Scholar 

  84. Calejo MT, Almeida AJ, Fernandes AI (2012) Exploring a new jellyfish collagen in the production of microparticles for protein delivery. J Microencapsul 29(6):520–531

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Thulasisingh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thulasisingh, A., Venkatesan, S.A. & Kumar, S. Green biopolysaccharides and its utilisation as biodegradable material in diverse fields: a review. Polym. Bull. 81, 165–187 (2024). https://doi.org/10.1007/s00289-023-04738-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04738-0

Keywords

Navigation