Skip to main content
Log in

Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: study of drug delivery behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, Gum Arabic Aldehyde (GAA) and polyvinyl alcohol (PVA) were used to develop pH-sensitive and self-healable hydrogels. The PVA and GAA based hydrogels have the advantages of non-toxicity, water-solubility, eco-friendly, biodegradability, and pH sensitivity. However, poor stiffness, low mechanical strength, and hydrophilicity limit their applications. Graphene oxide (GO), gelatin, and boric acid were used to improve the limitations of GAA/PVA hydrogels through cross-linking, Schiff-base reaction between aldehyde groups of GAA and amino groups of gelatin, and hydrogen bonding between PVA chains and boric acid. The prepared hydrogels demonstrated high mechanical properties, good self-healing properties, and pH sensitivity, which facilitate their application as favorable biomaterials for drug delivery. The swelling behavior, degradation, mechanical properties, and rheological behaviors were studied for hydrogels. The hydrogels demonstrated well mechanical properties and well pH sensitivity during controlled release investigation of rivastigmine (RIV) drug under intestinal (~ 83% at pH 7.4) media. Incorporating GO in the hydrogel network, enhanced the mechanical properties, self-healing properties, drug entrapment efficiency, and ensure the controlled release of the entrapped drug. The self-healing properties, swelling behavior, degradation, tensile and compressive tests, rheological behaviors, and in vitro drug release behavior were studied to monitor the effect of GO on the hydrogel properties. Our results illustrated that the self-healing nanocomposite hydrogel was expected to be a platform for drug delivery in pH 7.4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rahmani Z, Ghaemy M, Olad A (2021) Preparation of nanogels based on kappa-carrageenan/chitosan and N-doped carbon dots: study of drug delivery behavior. Polym Bull 78(5):2709–2726

    CAS  Google Scholar 

  2. Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, Kaschta J, Chrissafis K, Detsch R, Boccaccini AR (2014) Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B 2(11):1470–1482

    CAS  PubMed  Google Scholar 

  3. Olad A, Gharekhani H, Mirmohseni A, Bybordi A (2017) Synthesis, characterization, and fertilizer release study of the salt and pH-sensitive NaAlg-g-poly (AA-co-AAm)/RHA superabsorbent nanocomposite. Polym Bull 74(8):3353–3377

    CAS  Google Scholar 

  4. Olad A, Eslamzadeh M, Katiraee F, Mirmohseni A (2020) Evaluation of in vitro anti-fungal properties of allicin loaded ion cross-linked poly (AA-co-AAm)/PVA/Cloisite 15A Nanocomposite hydrogel films as wound dressing materials. J Polym Res 27(4):1–10

    Google Scholar 

  5. Mahdavinia GR, Rahmani Z, Karami S, Pourjavadi A (2014) Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed 25(17):1891–1906

    CAS  PubMed  Google Scholar 

  6. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481

    CAS  PubMed  Google Scholar 

  7. McKay CS, Finn M (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21(9):1075–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Trask R, Williams H, Bond I (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2(1):1–9

    Google Scholar 

  9. Liu S, Kang M, Li K, Yao F, Oderinde O, Fu G, Xu L (2018) Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels. Chem Eng Sci 334:2222–2230

    CAS  Google Scholar 

  10. Wang Y, Adokoh CK, Narain R (2018) Recent development and biomedical applications of self-healing hydrogels. Expert Opin Drug Deliv 15(1):77–91

    PubMed  Google Scholar 

  11. Rashidzadeh A, Olad A, Hejazi MJ (2017) Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Adv Polym Technol 36(2):177–185

    CAS  Google Scholar 

  12. Posocco B, Dreussi E, De Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8(5):2569–2615

    CAS  PubMed Central  Google Scholar 

  13. Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A (2005) New super-absorbing hydrogel hybrids from Gum Arabic and acrylic monomers. J Macromol Sci Part A 42(12):1655–1666

    Google Scholar 

  14. Mittal H, Maity A, Ray SS (2015) Gum ghatti and poly (acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties. Polym Degrad Stab 120:42–52

    CAS  Google Scholar 

  15. Dai L, Zhang L, Wang B, Yang B, Khan I, Khan A, Ni Y (2017) Multifunctional self-assembling hydrogel from guar gum. Chem Eng Sci 330:1044–1051

    CAS  Google Scholar 

  16. Chang M, Liu X, Meng L, Wang X, Ren J (2018) Xylan-based hydrogels as a potential carrier for drug delivery: effect of pore-forming agents. Pharmaceutics 10(4):261

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shariatinia Z, Jalali AM (2018) Chitosan-based hydrogels: preparation, properties and applications. Int J Biol Macromol 115:194–220

    CAS  PubMed  Google Scholar 

  18. Rahmani Z, Sahraei R, Ghaemy M (2018) Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: study of drug delivery behavior. Carbohydr Polym 194:34–42

    CAS  PubMed  Google Scholar 

  19. Mahdavinia GR, Rahmani Z, Mosallanezhad A, Karami S, Shahriari M (2016) Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalin Water Treat 57(43):20582–20596

    CAS  Google Scholar 

  20. Xu Z, Li Z, Jiang S, Bratlie KM (2018) Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS Omega 3(6):6998–7007

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel S, Goyal A (2015) Applications of natural polymer Gum Arabic: a review. Int J Food Prop 18(5):986–998

    CAS  Google Scholar 

  22. Dave PN, Gor A (2018) Natural polysaccharide-based hydrogels and nanomaterials: recent trends and their applications, Ch. 3 In: Handbook of nanomaterials for industrial applications (ISBN: 9780128133514), Dimensions, pp. 36–66

  23. Mekkawy AI, El-Mokhtar MA, El-Shanawany SM, Ibrahim EH (2016) Silver nanoparticles-loaded hydrogels, a potential treatment for resistant bacterial infection and wound healing: a review. Br J Pharm Res 14(2):1–19

    Google Scholar 

  24. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    CAS  PubMed  Google Scholar 

  25. Wang A, Pu K, Dong B, Liu Y, Zhang L, Zhang Z, Duan W, Zhu Y (2013) Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J Appl Toxicol 33(10):1156–1164

    CAS  PubMed  Google Scholar 

  26. Pandit AH, Mazumdar N, Imtiyaz K, Rizvi MMA, Ahmad S (2019) Periodate-modified Gum Arabic cross-linked PVA hydrogels: a promising approach toward photoprotection and sustained delivery of folic acid. ACS Omega 4(14):16026–16036

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Afinjuomo F, Fouladian P, Parikh A, Barclay TG, Song Y, Garg S (2019) Preparation and characterization of oxidized inulin hydrogel for controlled drug delivery. Pharmaceutics 11(7):356

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei J, Du C, Liu H, Chen Y, Yu H, Zhou Z (2016) Preparation and characterization of aldehyde-functionalized cellulosic fibers through periodate oxidization of bamboo pulp. Bioresources 11(4):8386–8395

    CAS  Google Scholar 

  29. Ali A, Ganie SA, Mazumdar N (2018) A new study of iodine complexes of oxidized Gum Arabic: an interaction between iodine monochloride and aldehyde groups. Carbohydr Polym 180:337–347

    CAS  PubMed  Google Scholar 

  30. Chen X, Fan M, Tan H, Ren B, Yuan G, Jia Y, Li J, Xiong D, Xing X, Niu X (2019) Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater Sci Eng C 101:619–629

    CAS  Google Scholar 

  31. Al Dalaty A, Karam A, Najlah M, Alany RG, Khoder M (2016) Effect of non-cross-linked calcium on characteristics, swelling behaviour, drug release and mucoadhesiveness of calcium alginate beads. Carbohydr Polym 140:163–170

    Google Scholar 

  32. Lee DH, Arisaka Y, Tonegawa A, Kang TW, Tamura A, Yui N (2019) Cellular orientation on repeatedly stretching gelatin hydrogels with supramolecular cross-linkers. Polymers 11(12):2095

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumaraswamy S, Babaladimath G, Badalamoole V, Mallaiah SH (2017) Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocomposites. Adv Mater Lett 8(4):546–552

    CAS  Google Scholar 

  34. Tiong ACY, Tan IS, Foo HCY, Lam MK, Mahmud HB, Lee KT (2022) Facile asymmetric modification of graphene nanosheets using κ-carrageenan as a green template. J Colloid Interface Sci 607(2):1131–1141

    CAS  PubMed  Google Scholar 

  35. Pagar K, Vavia P (2013) Rivastigmine-loaded l-lactide-depsipeptide polymeric nanoparticles: decisive formulation variable optimization. Sci Pharm 81(3):865–888

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Patil S, Babbar A, Mathur R, Mishra A, Sawant K (2010) Mucoadhesive chitosan microspheres of carvedilol for nasal administration. J Dr Targ 18(4):321–331

    CAS  Google Scholar 

  37. Reddy P, Eswaramma S, Krishna Rao K, Lee YI (2014) Dual responsive pectin hydrogels and their silver nanocomposites: swelling studies, controlled drug delivery and antimicrobial applications. Bull Korean Chem Soc 35(8):2391–2399

    CAS  Google Scholar 

  38. Nath J, Chowdhury A, Dolui SK (2018) Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect. Adv Polym Technol 37(8):3665–3679

    CAS  Google Scholar 

  39. Mansur HS, Sadahira CM, Souza AN, Mansur AA (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28(4):539–548

    CAS  Google Scholar 

  40. Pan C, Liu L, Chen Q, Zhang Q, Guo G (2017) Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Appl Mater Interfaces 9(43):38052–38061

    CAS  PubMed  Google Scholar 

  41. Jing Z, Xian X, Huang Q, Chen Q, Hong P, Li Y, Shi A (2020) Biocompatible double network poly (acrylamide-co-acrylic acid)-Al3+/poly (vinyl alcohol)/graphene oxide nanocomposite hydrogels with excellent mechanical properties, self-recovery and self-healing ability. New J Chem 44:10390–10403

    CAS  Google Scholar 

  42. Zhu J, Guo P, Chen D, Xu K, Wang P, Guan S (2018) Fast and excellent healing of hydroxypropyl guar gum/poly (N, N-dimethyl acrylamide) hydrogels. J Polym Sci B Polym Phys 56(3):239–247

    CAS  Google Scholar 

  43. Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh T-H, Nathanael AJ (2021) Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications. Polymers 13(21):3782

    Google Scholar 

  44. Pettignano A, Häring M, Bernardi L, Tanchoux N, Quignard F, Díaz DD (2017) Self-healing alginate–gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters. Mater Chem Front 1(1):73–79

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 27639 KB)

Supplementary file2 (MP4 72084 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, S., Olad, A. & Rahmani, Z. Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: study of drug delivery behavior. Polym. Bull. 80, 4117–4138 (2023). https://doi.org/10.1007/s00289-022-04247-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04247-6

Keywords

Navigation