Skip to main content
Log in

Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Wastewater treatment is one of the most interesting fields nowadays, especially removal of synthetic dyes from aqueous solution. For example, malachite green is considered as one the serious cationic dyes because cause tremendous damage to the human health then a series of dangerous diseases. Herein, we reported the synthesis of high-efficient novel anionic adsorbent hydrogels as gelatin-grafted-poly(acrylamide-co-itaconic acid) via free-radical polymerization by using methylenebisacrylamide, MBA, as crosslinking agent. The prepared modified gelatin hydrogels were detected via several analysis techniques: FTIR, XRD, and SEM, and thermal stability was studied by TGA technique as well. Moreover, the swellability of prepared hydrogel was examined and the data were found that maximum swelling rate % was 911% at optimum preparation conditions: 0.3 M of acrylamide and itaconic acid, 2.5 h, 5% (w/w%) of MBA, and temperature was 60 °C. Additionally, the maximum adsorption malachite green capacity by grafted gelatin hydrogels was measured as 93.5% (166.7 mg/g) in basic pH of 50 mL of MG dye solution (125 ppm) using 50 mg of hydrogels at 30 °C for 60 min. The adsorption isotherm models such as Langmuir and Freundlich for capture of dye was examined and results were well fitted with Langmuir model (R2 = 0.9923).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Elella MHA, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125

    Article  PubMed  Google Scholar 

  2. Thakur S, Chaudhary J, Kumar V, Thakur VK (2019) Progress in pectin based hydrogels for water purification: Trends and challenges. J Environ Manag 238:210–223

    Article  CAS  Google Scholar 

  3. Salman MS (2009) Removal of sulfate from waste water by activated carbon. Al-Khwarizmi Eng J 5(3):72–76

    Google Scholar 

  4. Elella MHA, Goda ES, Gamal H, El-Bahy SM, Nour MA, Yoon KR (2021) Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. Int J Biol Macromol 191:385–395

    Article  PubMed  Google Scholar 

  5. Perumal S, Atchudan R, Yoon DH, Joo J, Cheong IW (2019) Spherical chitosan/gelatin hydrogel particles for removal of multiple heavy metal ions from wastewater. Ind Eng Chem Res 58(23):9900–9907

    Article  CAS  Google Scholar 

  6. Liu D, Li Z, Zhu Y, Li Z, Kumar RJ (2014) Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: adsorption and desorption performance. Carbohydr Polym 111:469–476

    Article  CAS  PubMed  Google Scholar 

  7. Muya FN, Sunday CE, Baker P, Iwuoha EJWS (2016) Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Sci Technol 73(5):983–992

    Article  CAS  PubMed  Google Scholar 

  8. Hasan I, Bassi A, Alharbi KH, BinSharfan II, Khan RA, Alslame AJC (2020) Sonophotocatalytic degradation of malachite green by nanocrystalline chitosan-ascorbic acid@ NiFe2O4 spinel ferrite. Coationgs 10(12):1200

    Article  CAS  Google Scholar 

  9. Baeissa EJ (2016) Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles. J Alloys Compd 672:564–570

    Article  CAS  Google Scholar 

  10. Hasan I, Bhatia D, Walia S, Singh P (2020) Removal of malachite green by polyacrylamide-g-chitosan γ-Fe2O3 nanocomposite-an application of central composite design. Groundw Sustain Dev 11:100378

    Article  Google Scholar 

  11. Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta V (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697

    Article  CAS  Google Scholar 

  12. Sharma R, Kaith BS, Kalia S, Pathania D, Kumar A, Sharma N, Street RM, Schauer C (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45

    Article  CAS  Google Scholar 

  13. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: A review. Crit Rev Environ Sci Technol 47(19):1836–1876

    Article  CAS  Google Scholar 

  14. Anastopoulos I, Hosseini-Bandegharaei A, Fu J, Mitropoulos AC, Kyzas G (2018) Use of nanoparticles for dye adsorption. J Dispers Sci Technol 39(6):836–847

    Article  CAS  Google Scholar 

  15. Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, Rehman A, Yoon KR (2020) Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. J Environ Chem Eng 9:104702

    Article  Google Scholar 

  16. Kumar A, Rao KM, Han SS (2018) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym 180:128–144

    Article  CAS  PubMed  Google Scholar 

  17. Elella MHA, Abd ElHafeez E, Goda ES, Lee S, Yoon KR (2019) Smart bactericidal filter containing biodegradable polymers for crystal violet dye adsorption. Cellulose 26(17):9179–9206

    Article  Google Scholar 

  18. Verma A, Thakur S, Mamba G, Gupta RK, Thakur P, Thakur VK (2020) Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int J Biol Macromol 148:1130–1139

    Article  CAS  PubMed  Google Scholar 

  19. Sharma G, Thakur B, Kumar A, Sharma S, Naushad M, Stadler FJ (2020) Atrazine removal using chitin-cl-poly (acrylamide-co-itaconic acid) nanohydrogel: Isotherms and pH responsive nature. Carbohydr Polym 241:116258

    Article  CAS  PubMed  Google Scholar 

  20. Kozlov P, Burdygina GJP (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24(6):651–666

    Article  CAS  Google Scholar 

  21. Hanani ZN, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. Int J Biol Macromol 71:94–102

    Article  Google Scholar 

  22. Bello AB, Kim D, Kim D, Park H, Lee S-H (2020) Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng Part B Rev 26(2):164–180

    Article  CAS  PubMed  Google Scholar 

  23. Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E (2021) Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials 14:396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salahuddin B, Wang S, Sangian D, Aziz S, Gu Q (2021) Hybrid Gelatin Hydrogels in Nanomedicine Applications. ACS Appl Bio Mater 4(4):2886–2906

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz C, Vera M, Rivas BL, Sánchez S, Urbano B (2020) Magnetic methacrylated gelatin-g-polyelectrolyte for methylene blue sorption. RSC Adv 10(71):43799–43810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma Y, Qi P, Ju J, Wang Q, Hao L, Wang R, Sui K, Tan Y (2019) Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos Part B Eng 162:671–677

    Article  CAS  Google Scholar 

  27. Sethi S, Kaith BS, Kaur M, Sharma N, Khullar SJ (2020) A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent. J Chem Sci 132(1):1–16

    Article  Google Scholar 

  28. Xu S, Xu J, Lu J, Li T (2019) A multifunctional gelatin-quaternary ammonium copolymer exhibiting superior anionic dye adsorption for efficient emission reduction in leather tanning process-150

  29. Morsi RE, Elsalamony RA (2016) Superabsorbent enhanced-catalytic core/shell nanocomposites hydrogels for efficient water decolorization. New J Chem 40(3):2927–2934

    Article  CAS  Google Scholar 

  30. Elella MHA, Sabaa MW, Abd ElHafeez E, Mohamed R (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int J Biol Macromol 137:1086–1101

    Article  PubMed  Google Scholar 

  31. Mittal H, Parashar V, Mishra S, Mishra AJ (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471–482

    Article  CAS  Google Scholar 

  32. Fil BA (2016) Technology, Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of malachite green dye onto montmorillonite clay. Part Sci Technol 34(1):118–126

    Article  CAS  Google Scholar 

  33. Sabaa MW, Mohamed ME, Abdellatif MM, Soliman S (2020) Antibacterial effect of novel grafted gelatin on gram-negative bacteria. Polym Bull 77(1):427–440

    Article  CAS  Google Scholar 

  34. Elella MHA, Shalan AE, Sabaa MW, Mohamed RR (2022) One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv 12(2):1095–1104

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sobhanian P, Khorram M, Hashemi S-S, Mohammadi A (2019) Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol 130:977–987

    Article  CAS  PubMed  Google Scholar 

  36. Tomić SL, Mićić MM, Dobić SN, Filipović JM, Suljovrujić EH (2010) Smart poly (2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem 79(5):643–649

    Article  Google Scholar 

  37. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohyd Polym 66(2):229–245

    Article  CAS  Google Scholar 

  38. Kayaman N, Hamurcu EEG, Uyanik N, Baysal BM (1999) Interpenetrating hydrogel networks based on polyacrylamide and poly (itaconic acid): synthesis and characterization. Macromol Chem Phys 200(1):231–238

    Article  CAS  Google Scholar 

  39. Mishra RK, Ray AR (2011) Synthesis and characterization of poly N-[3-(dimethylamino) propyl] methacrylamide-co-itaconic acid hydrogels for drug delivery. J Appl Polym Sci 119(6):3199–3206

    Article  CAS  Google Scholar 

  40. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly (acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym 75(3):463–471

    Article  CAS  Google Scholar 

  41. Kumari HJ, Krishnamoorthy P, Arumugam T, Radhakrishnan S, Vasudevan D (2017) An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int J Biol Macromol 96:324–333

    Article  Google Scholar 

  42. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20(5):2828–2843

    Article  CAS  Google Scholar 

  43. Bajpai SK, Jain A (2012) Equilibrium and thermodynamic studies for adsorption of crystal violet onto spent tea leaves (STL). Water 4:52–71

    Google Scholar 

  44. Tang H, Huang H, Wang X, Wu K, Tang G, Li C (2016) Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange. Appl Surf Sci 379:296–303

    Article  CAS  Google Scholar 

  45. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57(1):385–470

    Article  CAS  Google Scholar 

  46. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  47. Makhado E, Pandey S, Nomngongo PN, Ramontja J (2017) Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution. Carbohyd Polym 176:315–326

    Article  CAS  Google Scholar 

  48. Kaith B, Sharma J, Kaur T, Sethi S, Shanker U, Jassal V (2016) Microwave-assisted green synthesis of hybrid nanocomposite: removal of Malachite green from waste water. Iran Polym J 25(9):787–797

    Article  CAS  Google Scholar 

  49. Rajabi M, Mahanpoor K, Moradi O (2019) Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: kinetic and thermodynamic studies. Compos B Eng 167:544–555

    Article  CAS  Google Scholar 

  50. Feyzi M, Nourozi L, Shariati-Rad M, Abdi F (2019) Kinetic and equilibrium isotherms of removal malachite green from aqueous solution by using Fe3O4@ SiO2-CPTS magnetic nanoparticles. Adv Nanochem 1(1):29–33

    Google Scholar 

  51. Qin P, Yang Y, Zhang X, Niu J, Yang H, Tian S, Zhu J, Lu M (2018) Highly efficient, rapid, and simultaneous removal of cationic dyes from aqueous solution using monodispersed mesoporous silica nanoparticles as the adsorbent. Nanomaterials 8(1):4

    Article  Google Scholar 

  52. Yildirim A, Bulut Y (2020) Adsorption behaviors of malachite green by using crosslinked chitosan/polyacrylic acid/bentonite composites with different ratios. Environ Technol Innov 17:100560

    Article  Google Scholar 

  53. Amiri M, Salavati-Niasari M, Akbari A, Gholami T (2017) Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int J Hydrog Energy 42(39):24846–24860

    Article  CAS  Google Scholar 

  54. Hasan I, Bhatia D, Walia S, Singh P (2020) Removal of malachite green by polyacrylamide-g-chitosan γ-Fe2O3 nanocomposite-an application of central composite design. Groundw Sustain Dev 11:100378

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge STDF (Egypt) for their valuable support through research project fund (Project ID 27777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. Abu Elella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elella, M.H.A., Aamer, N., Mohamed, Y.M.A. et al. Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment. Polym. Bull. 79, 11217–11233 (2022). https://doi.org/10.1007/s00289-022-04079-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04079-4

Keywords

Navigation