Skip to main content
Log in

Castor oil/hydroxyapatite modified chitosan composite scaffolds with antibacterial property for wound healing applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Castor oil (CO) as an inexpensive green polyol possesses antimicrobial and anti-inflammatory and wound healing properties. The castor oil/nanohydroxyapatite (nHA) modified chitosan (CS) composite (CO/nHA-CS) with 1. 2.5, 5, and 7.5 wt% of nHA-CS were synthesized via solution mixing and casting technique. The crystal structure, surface functional group, thermal stability, morphology, water absorption capacity, porosity, biodegradability, antibacterial activity, and cytocompatibility properties of CO/nHA-CS bionanocomposites have been evaluated. FESEM images showed random and uniform dispersion of nHA-CS fillers throughout the cured CO resin. The degree of porosity, water absorption, and biodegradability of the nanocomposites increased with the increase in nHA-CS loading. Antibacterial activity of scaffolds against Escherichia coli and Staphylococcus aureus bacteria was identified by the diffusion method. The scaffolds were more effective against the growth of Staphylococcus aureus than Escherichia coli. Cell viability results confirmed that CO/nHA-CS composites have no toxic effects against MRC-5 fibroblast cells. In conclusion, CO/nHA-CS has the potential to be explored as a cheap and effective wound healing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Code availability

Not applicable for that section.

References

  1. Venus M, Waterman J, McNab I (2010) Basic physiology of the skin. Surgery (Oxford) 28(10):469–472. https://doi.org/10.1016/j.mpsur.2010.07.011

    Article  Google Scholar 

  2. Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:1–7

    Google Scholar 

  3. Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55(3):185–193. https://doi.org/10.1054/bjps.2002.3800

    Article  CAS  PubMed  Google Scholar 

  4. Lligadas G, Ronda JC, Galia M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromol 11(11):2825–2835. https://doi.org/10.1021/bm100839x

    Article  CAS  Google Scholar 

  5. Wang HJ, Rong MZ, Zhang MQ, Hu J, Chen HW, Czigány T (2008) Biodegradable foam plastics based on castor oil. Biomacromol 9(2):615–623. https://doi.org/10.1021/bm7009152

    Article  CAS  Google Scholar 

  6. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II. Foams. J Am Oil Chem Soc 84(1):65–72

    Article  CAS  Google Scholar 

  7. McGarey WA (1993) The oil that heals: a physician's success with castor oil treatments. ARE Press. https://books.google.co.in/books?id=pWOMrqQ24AIC

  8. Koc H, Kilicay E, Karahaliloglu Z, Hazer B, Denkbas EB (2021) Prevention of urinary infection through the incorporation of silver–ricinoleic acid–polystyrene nanoparticles on the catheter surface. J Biomater Appl 36(3):385-405. https://doi.org/10.1177/0885328220983552

    Article  CAS  PubMed  Google Scholar 

  9. Totaro G, Cruciani L, Vannini M, Mazzola G, Di Gioia D, Celli A, Sisti L (2014) Synthesis of castor oil-derived polyesters with antimicrobial activity. Eur Polym J 56:174–184. https://doi.org/10.1016/j.eurpolymj.2014.04.018

    Article  CAS  Google Scholar 

  10. Mao J, Zhao L, De Yao K, Shang Q, Yang G, Cao Y (2003) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64(2):301–308. https://doi.org/10.1002/jbm.a.10223

    Article  CAS  PubMed  Google Scholar 

  11. Kizaloglu A, Kilicay E, Karahaliloglu Z, Hazer B, Denkbas EB (2020) The preparation of chitosan membrane improved with nanoparticles based on unsaturated fatty acid for using in cancer-related infections. J Bioact Compat Polym 35(4–5):328–350

    Article  CAS  Google Scholar 

  12. Arslan H, Hazer B, Yoon SC (2007) Grafting of poly (3-hydroxyalkanoate) and linoleic acid onto chitosan. J Appl Polym Sci 103(1):81–89

    Article  CAS  Google Scholar 

  13. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev life sci 10(1):27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  14. Singh DK, Ray AR (2000) Biomedical applications of chitin, chitosan, and their derivatives. J Macromol Sci Polym Rev 40(1):69–83. https://doi.org/10.1081/MC-100100579

    Article  Google Scholar 

  15. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio) materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  16. Teimouri A, Azadi M (2016) Preparation and characterization of novel chitosan/nanodiopside/nanohydroxyapatite composite scaffolds for tissue engineering applications. Int J Polym Mater 65(18):917–927. https://doi.org/10.1080/00914037.2016.1180606

    Article  CAS  Google Scholar 

  17. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33(36):9167–9178. https://doi.org/10.1016/j.biomaterials.2012.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Nan K, Shi S, Chen H (2012) Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Macromol Biol J Int 50(1):43–49. https://doi.org/10.1016/j.ijbiomac.2011.09.021

    Article  CAS  Google Scholar 

  19. Carson SN, Wiggins C, Overall K, Herbert J (2003) Using a castor oil-balsam of Peru-trypsin ointment to assist in healing skin graft donor sites. Ostomy Wound Manag 49(6):60–64

    Google Scholar 

  20. Kim IS, Kumta PN (2004) Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B 111(2–3):232–236. https://doi.org/10.1016/j.mseb.2004.04.011

    Article  CAS  Google Scholar 

  21. Li M, Ke QF, Tao SC, Guo SC, Rui BY, Guo YP (2016) Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B 4(42):6830–6841. https://doi.org/10.1039/C6TB01560C

    Article  CAS  PubMed  Google Scholar 

  22. Meagher MJ, Weiss-Bilka HE, Best ME, Boerckel JD, Wagner DR, Roeder RK (2016) Acellular hydroxyapatite-collagen scaffolds support angiogenesis and osteogenic gene expression in an ectopic murine model: effects of hydroxyapatite volume fraction. J Biomed Mater Res A 104(9):2178–2188. https://doi.org/10.1002/jbm.a.35760

    Article  CAS  PubMed  Google Scholar 

  23. Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR (1992) Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Investig 89(2):530–538. https://doi.org/10.1172/JCI115617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diez-Pascual AM, Díez-Vicente AL (2015) Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromol 16(9):2631–2644. https://doi.org/10.1021/acs.biomac.5b00447

    Article  CAS  Google Scholar 

  25. Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99(2):167–182. https://doi.org/10.1084/jem.99.2.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromol 5(3):718–726. https://doi.org/10.1021/bm034327e

    Article  CAS  Google Scholar 

  27. Fan J, Chen J, Yang L, Lin H, Cao F (2009) Preparation of dual-sensitive graft copolymer hydrogel based on N-maleoyl-chitosan and poly (N-isopropylacrylamide) by electron beam radiation. Bull Mater Sci 32(5):521. https://doi.org/10.1007/s12034-009-0077-x

    Article  CAS  Google Scholar 

  28. Venkatesan J, Qian ZJ, Ryu B, Kumar NA, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83(2):569–577. https://doi.org/10.1016/j.carbpol.2010.08.019

    Article  CAS  Google Scholar 

  29. Hamed AA, Abdelhamid IA, Saad GR, Elkady NA, Elsabee MZ (2020) Synthesis, characterization and antimicrobial activity of a novel chitosan schiff bases based on heterocyclic moieties. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.302

    Article  PubMed  Google Scholar 

  30. Sinclair RG, McKay AF, Jones RN (1952) The infrared absorption spectra of saturated fatty acids and esters1. J Am Chem Soc 74(10):2570–2575

    Article  CAS  Google Scholar 

  31. Mistri E, Routh S, Ray D, Sahoo S, Misra M (2011) Green composites from maleated castor oil and jute fibres. Ind Crops Prod 34(1):900–906. https://doi.org/10.1016/j.indcrop.2011.02.008

    Article  CAS  Google Scholar 

  32. Saunderd JH, Frisch KC (1962) Polyurethanes: chemistry and technology, vol 16. Interscience Publishers, Geneva

    Google Scholar 

  33. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158(2):353–361. https://doi.org/10.1016/j.cej.2010.02.003

    Article  CAS  Google Scholar 

  34. Mohamed KR, Beherei HH, El-Rashidy ZM (2014) In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J Adv Res 5(2):201–208. https://doi.org/10.1016/j.jare.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  35. Ghorbanian L, Emadi R, Razavi M, Shin H, Teimouri A (2012) Synthesis and characterization of novel nanodiopsidebioceramic powder. J Nanostruct 2(3):357–361. https://doi.org/10.1016/j.msec.2012.01.033

    Article  CAS  Google Scholar 

  36. Zhu H, Liu N, Feng X, Chen J (2012) Fabrication and characterization of silk fibroin/bioactive glass composite films. Mater Sci Eng C: C 32(4):822–829. https://doi.org/10.1016/j.msec.2012.01.033

    Article  CAS  Google Scholar 

  37. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7(5):557–572. https://doi.org/10.1089/107632701753213183

    Article  CAS  PubMed  Google Scholar 

  38. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6):1629–1642. https://doi.org/10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  39. Cabeen MT, Jacobs-Wagner C (2005) Bacterial cell shape. Nat Rev Microbiol 3(8):601–610. https://doi.org/10.1038/nrmicro1205

    Article  CAS  PubMed  Google Scholar 

  40. Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99(8):2806–2814. https://doi.org/10.1016/j.biortech.2007.06.044

    Article  CAS  PubMed  Google Scholar 

  41. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272. https://doi.org/10.1080/08905439209549838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Hoda Daru Isfahan pharmaceutical company and Mahan Daru Roham pharmaceutical company for financial support of this research.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Amoohadi.

Ethics declarations

Conflict of interests

The Authors declare that there is no conflict of interest.

Ethics approval

Not applicable' for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaer, B., Norastehfar, N., Amoohadi, M.H. et al. Castor oil/hydroxyapatite modified chitosan composite scaffolds with antibacterial property for wound healing applications. Polym. Bull. 79, 9407–9426 (2022). https://doi.org/10.1007/s00289-021-03953-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03953-x

Keywords

Navigation