Skip to main content
Log in

Development of PAMAM dendrimer-modified magnetic chitosan: a novel platform for α-amylase immobilization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The two generations of PAMAM-modified magnetic chitosan have been synthesized and are employed as enzyme carriers due to their biocompatibility and high affinity toward the biomolecules. This is the first attempt to use these carriers in the field of enzyme immobilization and is found to be about 93.95% immobilization efficiency by adsorption with second generation of the modified dendritic polymer (CSM-PAMAM G2). Here, α-amylase was also immobilized on CSM-PAMAM G2 by covalent binding method using gluteraldehyde as cross-linking agent in the range of 0.1–1% and found to be optimum immobilized enzyme activity at 0.4% which has been taken for further experimental studies. The immobilized enzymes by both methods have shown wider range of pH stability and exhibited about 60–75% of relative activity at pH 9. They have demonstrated broader temperature stability, and both have shown optimum activity at 60 °C. The effect of polymer concentration on enzyme activity was studied, and the optimum value is found to be at 0.2 g/mL. They have acquired about 85–90% of thermal stability due to their adequate conformational stability that protect from thermal unfolding. The km values 0.53 ± 0.04, 0.85 ± 0.03 and Vmax values 23.25 ± 0.04, 16.67 ± 0.06 for adsorbed and covalently immobilized enzyme confirmed their high affinity and improved activity. They retained 40–60% of relative activities after six months of storage, and the remarkable reuse assay was found to be that the carriers are very easy to handle due to their magnetic separation which will extend their application in many industrial fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSM:

Magnetic chitosan

PAMAM:

Polyamidoamine

CSM-PAMAM G1:

First generation of PAMAM modified magnetic chitosan

CSM-PAMAM G2:

Second generation of PAMAM modified magnetic chitosan

References

  1. Goriushkina TB, Soldatkin AP, Dzyadevych SV (2009) Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J Agric Food Chem 57(15):6528–6535

    CAS  PubMed  Google Scholar 

  2. Wang S, Su P, Yang Y (2012) Online immobilized enzyme microreactor for the glucose oxidase enzymolysis and enzyme inhibition assay. Anal Biochem 427(2):139–143

    CAS  PubMed  Google Scholar 

  3. Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Soliman SM, Elella MH, Ebrahim NA (2021) Natural polymers in micro- and nanoencapsulation for therapeutic and diagnostic applications: part I: lipids and fabrication techniques. Nano Microencapsul Tech Appl

  4. Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Soliman SM, Elella MH, Ebrahim NA (2021) Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part II-polysaccharides and proteins. Nano Microencapsul Tech Appl

  5. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    CAS  Google Scholar 

  6. Pazarlioglu NK, Sarisik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40(2):767–771

    CAS  Google Scholar 

  7. Elella MH, Hanna DH, Mohamed RR, Sabaa MW (2021) Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym Bull. https://doi.org/10.1007/s00289-021-03656-3

    Article  Google Scholar 

  8. Goda ES, Elella MH, Sohail M, Singu BS, Pandit B, El Shafey AM, Aboraia AM, Gamal H, Hong SE, Yoon KR (2021) N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 182:680–688

    CAS  PubMed  Google Scholar 

  9. Bryjak J (2003) Glucoamylase, α-amylase and β-amylase immobilisation on acrylic carriers. Biochem Eng J 16(3):347–355

    CAS  Google Scholar 

  10. Ertan F, Yagar H, Balkan B (2006) Some properties of free and immobilized α-amylase from penicillium griseofulvum by solid state fermentation. Prep Biochem Biotechnol 36(1):81–91

    CAS  PubMed  Google Scholar 

  11. Lim LH, Macdonald DG, Hill GA (2003) Hydrolysis of starch particles using immobilized barley α-amylase. Biochem Eng J 13(1):53–62

    CAS  Google Scholar 

  12. Elmehbad NY, Mohamed NA (2021) Synthesis, characterization, and antimicrobial activity of novel N-acetyl, N’-chitosanacetohydrazide and its metal complexes. Int J Polym Mater Polym Biomater 1–11

  13. Elella MH, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, ur Rehman A, Yoon KR (2021) Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng 9:104702

  14. Elella MH, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125

    PubMed  Google Scholar 

  15. Goda ES (2021) Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 28:5087–5105

    CAS  Google Scholar 

  16. Abdel-Aziz MM, Elella MHA, Mohamed RR (2020) Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol 142:244–253

    CAS  PubMed  Google Scholar 

  17. Zhang Q, Wang N, Zhao L, Xu T, Cheng Y (2013) Polyamidoamine dendronized hollow fiber membranes in the recovery of heavy metal ions. ACS Appl Mater Interfaces 5(6):1907–1912

    CAS  PubMed  Google Scholar 

  18. Schluter AD, Rabe JP (2000) Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew Chem Int Ed 39(5):864–883

    CAS  Google Scholar 

  19. Bagheri M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Rogers RD (2007) Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 9(1):381–387

    PubMed  Google Scholar 

  20. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117

    CAS  Google Scholar 

  21. Wang S, Su P, Hongjun E, Yang Y (2010) Polyamidoamine dendrimer as a spacer for the immobilization of glucose oxidase in capillary enzyme microreactor. Anal Biochem 405(2):230–235

    CAS  PubMed  Google Scholar 

  22. Pan BF, Gao F, Gu HC (2005) Dendrimer modified magnetite nanoparticles for protein immobilization. J Colloid Interface Sci 284(1):1–6

    CAS  PubMed  Google Scholar 

  23. Ma M, Cheng Y, Xu Z, Xu P, Qu H, Fang Y, Xu T, Wen L (2007) Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem 42(1):93–98

    CAS  PubMed  Google Scholar 

  24. Tanaka T, Shibata K, Hosokawa M, Hatakeyama K, Arakaki A, Gomyo H, Mogi T, Taguchi T, Wake H, Tanaami T (2012) Characterization of magnetic nanoparticles modified with thiol functionalized PAMAM dendron for DNA recovery. J Colloid Interface Sci 377(1):469–475

    CAS  PubMed  Google Scholar 

  25. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71(3):445–462

    CAS  PubMed  Google Scholar 

  26. Jia L, Xu JP, Wang H, Ji J (2011) Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers. Colloids Surf B 84(1):49–54

    CAS  Google Scholar 

  27. Wang S, Su P, Ding F, Yang Y (2013) Immobilization of cellulase on polyamidoamine dendrimer-grafted silica. J Mol Catal B Enzym 89:35–40

    CAS  Google Scholar 

  28. Zhu W, Zhang Y, Hou C, Pan D, He J, Zhu H (2016) Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. J Nanoparticle Res 18:1–3

    CAS  Google Scholar 

  29. Pan BF, Gao F, Gu HC (2005) Dendrimer modified magnetite nanoparticles for protein immobilization. J Colloid Interface Sci 284:1–6

    CAS  PubMed  Google Scholar 

  30. Cardoso FP, Neto SA, Ciancaglini P, de Andrade AR (2012) The use of PAMAM dendrimers as a platform for laccase immobilization: kinetic characterization of the enzyme. Appl Biochem Biotechnol 167:1854–1864

    CAS  PubMed  Google Scholar 

  31. Uzun K, Cevik E, Senel M, Sozeri H, Baykal A, Abasiyanik MF, Toprak MS (2010) Covalent immobilization of invertase on PAMAMdendrimer modified superparamagnetic iron oxide nanoparticles. J Nanopart Res 12:3057–3067

    CAS  Google Scholar 

  32. Fan Y, Su F, Li K, Ke C, Yan Y (2017) Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci Rep 7:45643

    PubMed  PubMed Central  Google Scholar 

  33. Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11(6):910–917

    CAS  PubMed  Google Scholar 

  34. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM (2002) Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35(9):3456–3462

    CAS  Google Scholar 

  35. Cao C, Xiao L, Chen C, Shi X, Cao Q, Gao L (2014) In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye. Powder Technol 260:90–97

    CAS  Google Scholar 

  36. Sakti SCW (2015) Development of magnetic separation using modified magnetic chitosan for removal of pollutants in solution, Hokkaido University

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  38. Bernfeld P (1955) Amylases, α and β. Methods Enzymol 1:149–158

    CAS  Google Scholar 

  39. Zarghami Z, Akbari A, Latifi AM, Amani MA (2016) Design of a new integrated Chitosan-PAMAM Dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics. Bioresour Technol 205:230–238

    CAS  PubMed  Google Scholar 

  40. Zhu W, Zhang Y, Hou C, Pan D, He J, Zhu H (2016) Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. J Nanoparticle Res 18:1–3

    CAS  Google Scholar 

  41. Zawadzki J, Kaczmarek H (2010) Thermal treatment of chitosan in various conditions. Carbohyd Polym 80(2):394–400

    CAS  Google Scholar 

  42. Yuwei C, Jianlong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168(1):286–292

    Google Scholar 

  43. Baghayeri M, Alinezhad H, Fayazi M, Tarahomi M, Ghanei-Motlagh R, Maleki B (2019) A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim Acta 312:80–88

    CAS  Google Scholar 

  44. Fan Y, Wu G, Su F, Li K, Xu L, Han X, Yan Y (2016) Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel 178:172–178

    CAS  Google Scholar 

  45. Tripathi P, Leggio LL, Mansfeld J, Ulbrich-Hofmann R, Kayastha AM (2007) α-amylase from mung beans (Vigna radiata)–Correlation of biochemical properties and tertiary structure by homology modelling. Phytochemistry 68(12):1623–1631

    CAS  PubMed  Google Scholar 

  46. Keskin S, Sirin Y, Ozdemir Keskin M (2017) Covalent immobilization of α-amylase on chitosan beads. Sarkarya Univ J Sci. https://doi.org/10.16984/saufenbilder.293313

    Article  Google Scholar 

  47. Bindu VU, Mohanan PV (2017) Enhanced stability of α-Amylase via immobilization onto chitosan-TiO2 nanocomposite. Nanosci Technol 4(2):1–9

    Google Scholar 

  48. Kumakura M, Kaetsu I (1982) Effect of the polymer matrix on the immobilization of lipase by radiation polymerization. Polym Bull 8(2):75–79

    CAS  Google Scholar 

  49. Xi F, Wu J, Jia Z, Lin X (2005) Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochem 40(8):2833–2840

    CAS  Google Scholar 

  50. Singh P, Gupta P, Singh R, Sharma R (2012) Activity and stability of immobilized alpha-amylase produced by Bacillus acidocaldarius. Int J Pharm Life Sci 3(12)

  51. Saevels J, Van den Steen K, Van Schepdael A, Hoogmartens J (1996) Study of the competitive inhibition of adenosine deaminase by erythro-9-(2-hydroxy-3-nonyl)adenine using capillary zone electrophoresis. J Chromatogr A 745(1):293–298

    CAS  Google Scholar 

  52. Roig M, Slade A, Kennedy J (1993) α-Amylase immobilized on plastic supports: stabilities, pH and temperature profiles and kinetic parameters. Biomater Artif Cells Immobil Biotechnol 21(4):487–525

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support granted by UGC-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mohanan Puzhavoorparambil.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unniganapathi, B.V., Mohanan Puzhavoorparambil, V. Development of PAMAM dendrimer-modified magnetic chitosan: a novel platform for α-amylase immobilization. Polym. Bull. 79, 9025–9042 (2022). https://doi.org/10.1007/s00289-021-03945-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03945-x

Keywords

Navigation