Skip to main content
Log in

Augmented structural and optical characteristics of SnO2/MnO2-doped PEO/PVP blend for photodegradation against organic pollutants

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper aims to fabricate of (PEO-PVP) blend doped with SnO2/MnO2 NPs for photodegradation of organic pollutants with low cost, high activity high propagation and anti-aggregation of nanoparticles compare with other materials.The polymer blend was prepared with ratio: 80 wt.% PEO and 20 wt.% PVP. The structural and optical properties of (PEO-PVP-SnO2-MnO2) nanocomposites have been studied in wavelength range (220–820) nm. The photodegradation behavior for (PEO-PVP-SnO2-MnO2) nanocomposites against organic pollutants has been investigated. The results indicated that the absorbance of (PEO–PVP) blend increases about 51% with adding of 4.5 MnO2NPs. The energy gap decreased for allowed and forbidden transitions about 55% and 91%, respectively, by adding of 4.5 MnO2NPs, this behavior is useful for optoelectronics, photocatalysis, the solar cells and diodes fields with low cost and light weight. Finally, the photodegradation activity of (PEO-PVP) blend and (PEO-PVP-SnO2) were increased with increasing of the MnO2 NPs ratios. The (PEO–PVP–SnO2–MnO2) NCs with 4.5 wt% of MnO2 NPs have photodegradation ratio 59%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang Z, Wu W (2012) Nanotechnology-enabled energy harvesting for self- powered micro-/ nanosystems. Angew Chem Int Eds 51:11700–11721

    Article  CAS  Google Scholar 

  2. S. Zhang S, J. Li, M. Zeng, (2013) In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl Mater Interfaces 5:12735–12743

    Article  Google Scholar 

  3. Wang Q, Wang S, Li J, Moriyama H (2012) Synthesis and characterization of C60/polyaniline composites from interfacial polymerization. J Polym Sci Part B: Polym Phys 50(20):1426–1432

    Article  CAS  Google Scholar 

  4. Muthuvinayagam M, Gopinathan C (2014) Synthesis and characterization of novel proton conducting polymer blend electrolytes. Polym-Plast Technol Eng 53:1333–1338

    Article  CAS  Google Scholar 

  5. Agool Ibrahim R, Kadhim Kadhim J, Hashim Ahmed (2016) Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int J Plast Technol. https://doi.org/10.1007/s12588-016-9144-5

    Article  Google Scholar 

  6. Hashim A (2020) Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J Inorg Organomet Polym 30:3894–3906. https://doi.org/10.1007/s10904-020-01528-3

    Article  CAS  Google Scholar 

  7. Sengwa RJ, Choudhary S (2014) Structural characterization of hydrophilic polymer blends/ montmorillonite clay nanocomposites. J Appl Polym Sci 131:40617

    Article  Google Scholar 

  8. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, NarasimhaRao VVR (2014) Investigations on PEO/PVP/NaBrcomplexed polymer blend electrolytes for electrochemical cell applications. J Membrane Sci 454:200–211

    Article  Google Scholar 

  9. Morsi MA, Abdelghany AM (2017) UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater Chem Phys 201:100–112

    Article  CAS  Google Scholar 

  10. Giampiccolo A, Tobaldi D, Ansell M (2016) Synthesis of Co-TiO2 nanostructured photocatalytic coatings for MDF substrates. Green Mater 4(4):140–149

    Article  Google Scholar 

  11. Deng A, Zhu Y, Zhou L (2018) Fabrication of TiO2-WO3 hollow spheres via a templating technique for photocatalytic applications. Micro Nano Lett 13(1):12–17

    Article  CAS  Google Scholar 

  12. Yu S, Hing P, Hu X (2000) Dielectric properties of polystyrene–aluminum-nitride composites. J Appl Phys 88:398–404

    Article  CAS  Google Scholar 

  13. Dang T, Cheney M, Qian S (2013) A novel rapid one-step synthesis of manganese oxide nanoparticles at room temperature using poly(dimethylsiloxane). Ind Eng Chem Res 52(7):2750–2753

    Article  CAS  Google Scholar 

  14. Tripathy S, Mishra A, Jha S (2013) Microwave assisted hydrothermal synthesis of mesoporous SnO2nanoparticles for ethanol Sensing and degradation. J Mater Sci Mater Electron 24:2082–2090

    Article  CAS  Google Scholar 

  15. Chen J, Li C, Xu F (2012) Hollow SnO2 microspheres for high-efficiency bilayered dye sensitized solar cell. RSC Adv 2:7384–7387

    Article  CAS  Google Scholar 

  16. Hara K, Zhao Z, Cui Y (2011) Nanocrystalline electrodes based on nanoporous-walled WO3nanotubes for organic-dye-sensitized. Langmuir 27:12730–12736

    Article  CAS  Google Scholar 

  17. Lin Y, Nagarale R, Klavetter K (2012) SnO2 and TiO2-supported-SnO2 lithium battery anodes with improved electrochemical performance. J Mater Chem 22:11134–11139

    Article  CAS  Google Scholar 

  18. Kim S, Choi M, Choi H (2016) Photocataytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull 74:85–89

    Article  CAS  Google Scholar 

  19. Wang Q, Lin B, Xu B (2010) Preparation and photocatalytic properties of mesoporous SnO2-hexaniobate layered nanocomposite. Microporous Mesoporous Mater 130:344–351

    Article  CAS  Google Scholar 

  20. Wei Z, Wang G, Wang P, Liu L, Qi M (2012) Crystallization behavior of poly(ϵ-caprolactone)/Tio2nanocomposites obtained by in situ polymerization. Polym Eng Sci 52:1047–1057

    Article  CAS  Google Scholar 

  21. Hashim A, Habeeb MA (2019) Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

  22. Hashim Ahmed, Jassim Ali (2017) Novel of (PVA-ST-PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens Lett. https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  23. Hadi S, Hashim A, Jewad A (2011) Optical properties of (PVA-LiF) composites. Aust J Basic Appl Sci 5(9):2192–2195

    CAS  Google Scholar 

  24. Salman S, Abdu-allah M, Bakr N (2014) Optical characterization of red methyl doped poly (vinyl alcohol) flms. Int J EngTechn Res 2(4):126–128

    Google Scholar 

  25. Noweell M, Pandel N, Liu X (2015) Characterization of sputtered CdTe thin films electron batter diffraction and correlation with device performance. J MicoscMicroanal 21(4):27–35

    Google Scholar 

  26. Chiladova A, Wiener J, Polakova M (2011) Testing the photocatalytic activity of TiO2 nanoparticles with Potassium Permanganate solution. Nano Con TM 21:9

    Google Scholar 

  27. Abdelghany AM, Abdelrazek EM, Rashad DS (2014) Impact of in situ preparation of CdS filled PVP nanocomposite, Spectrochimica acta. Part A, molecular and biomolecular spectroscopy 130:302–308

    Article  CAS  Google Scholar 

  28. Muthuvinayagam M, Sundaramahalingam K, Vanitha D, Vahini M (2019) Structural and electrical properties of ammonium thiocyanate doped poly ethylene oxide / poly vinyl pyrrolidone blend. Polym Electrolytes 9:264–267

    Google Scholar 

  29. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VVRN (2014) Investigations on PEO/PVP/NaBrcomplexed polymer blend electrolytes for electrochemical cell applications. J Memb Sci 454:200–211

    Article  CAS  Google Scholar 

  30. Al-Taa’y W, Nabi MA, Yusop RM, Yousif E, Abdullah BM, Salih JSN, Zubairi SI (2014) Effect of Nano ZnO on the optical properties of polyvinyl chloride films hindawi publishing corporation. Int J Polym Sci. https://doi.org/10.1155/2014/697809

    Article  Google Scholar 

  31. Nangia R, Neeraj S, Ambika S (2017) Preparation, structural and dielectric properties of solution grown polyvinyl alcohol (PVA) film. IOP Conf Series. https://doi.org/10.1088/1757-899X/225/1/012044

    Article  Google Scholar 

  32. Shanshool H, Yahaya M, Yunu W, Abdullah I (2015) Optical properties of PVDF/ZNO nanocomposites. Int J Techn Res Appl 23:51–58

    Google Scholar 

  33. Ahmed H, Abduljalil HM, Hashim A (2019) Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  34. Indolia A, Gaur M (2013) Optical properties of solution grown PVDF–ZnOnanocomposite thin flms. J Polym Res 20:43–50

    Article  Google Scholar 

  35. Hashim A, Al-Khafaji Y, Hadi A (2019) Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans Electr Electron Mater 20:530–536. https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  36. Salman S, Bakr N, Mahmood M (2014) Preparation and study of some optical properties of (PVA Ni(CH3COO)2) composites. Int J Curr Res 6(11):9638–9643

    Google Scholar 

  37. Kan C, Wang C, Zhu J, Li H (2010) Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel. J Solid State Chem 183:858–865

    Article  CAS  Google Scholar 

  38. Hadi Aseel, Hashim Ahmed, Al-Khafaji Yahya (2020) Structural optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00189-w

    Article  Google Scholar 

  39. Kramadhati S, Thyagarajan K (2013) Optical properties of pure and doped (Kno3& Mgcl2) polyvinyl alcohol polymer thin films. Int J Eng Res Dev 6(8):15–8

    Google Scholar 

  40. Ahmad A, Awatif A, Abdul-Majied Z (2007) Dopping effect on optical constants of polymethylmethacrylate (PMMA). J Eng Technol 25(4):558–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussien, H.A.J., Kadhim, R.G. & Hashim, A. Augmented structural and optical characteristics of SnO2/MnO2-doped PEO/PVP blend for photodegradation against organic pollutants. Polym. Bull. 79, 5219–5234 (2022). https://doi.org/10.1007/s00289-021-03778-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03778-8

Keywords

Navigation