Skip to main content
Log in

Photocatalytic activity of polyaniline and neutral polyaniline for degradation of methylene blue and malachite green dyes under UV Light

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A polyaniline (PANI) and neutral Polyaniline (NPANI) have been synthesized in acetonitrile–water mixture via the chemical oxidative polymerization of aniline. Scanning electron microscopy, FTIR spectra, UV–vis spectroscopy measurements were used to characterize the resulting PANI and NPANI. The photocatalytic activities of PANI and NPANI were investigated by the degradation of methylene blue (MB) and malachite green (MG) dyes in aqueous medium under UV light irradiation. MB and MG dyes completely degraded under UV light irradiation in the presence of NPANI after 60 and 75 min, respectively. The effect of dye type, irradiation time, dye concentration and photocatalyst amount on photocatalytic performance of PANI and NPANI have been examined under UV light irradiation. Three kinetic models have proposed for photocatalytic degradation of dyes by using PANI and NPANI under UV light illumination. This work explores the easy way to synthesize efficient PANI and NPANI polymers to degrade organic compound under both UV and visible light irradiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data in this study are given in this published article.

References

  1. Sarmah S, Kumar A (2011) Photocatalytic activity of polyaniline-TiO2 nanocomposites. Indian J Phys 85:713

    Article  CAS  Google Scholar 

  2. Adams V, Marley J, McCarroll C (2007) Prilocaine induced methaemoglobinaemia in a medically compromised patient. Was this an inevitable consequence of the dose administered? Br Dent J 203(10):585–587. https://doi.org/10.1038/bdj.2007.1045

    Article  CAS  PubMed  Google Scholar 

  3. Linz AJ, Greenham RK, Fallon LF Jr (2006) Methemoglobinemia: an industrial outbreak among rubber molding workers. J Occup Environ Med 48(5):523–528. https://doi.org/10.1097/01.jom.0000201815.32098.99

    Article  CAS  PubMed  Google Scholar 

  4. da Silva SH, Vinaches P, Pergher SBC (2018) Zeolite synthesis in basic media using expanded perlite and its application in Rhodamine B adsorption. Mater Lett 227:258–260. https://doi.org/10.1016/j.matlet.2018.05.095

    Article  CAS  Google Scholar 

  5. Bordbar M, Sharifi-Zarchi Z, Khodadadi B (2017) Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. J Sol-Gel Sci Techn 81(3):724–733. https://doi.org/10.1007/s10971-016-4239-1

    Article  CAS  Google Scholar 

  6. Baslak C, Arslan G, Kus M, Cengeloglu Y (2016) Removal of Rhodamine B from water by using CdTeSe quantum dot-cellulose membrane composites. RSC Adv 6(22):18549–18557. https://doi.org/10.1039/c5ra23433f

    Article  CAS  Google Scholar 

  7. Demey H, Tria SA, Soleri R, Guiseppi-Elie A, Bazin I (2017) Sorption of his-tagged protein G and protein G onto chitosan/divalent metal ion sorbent used for detection of microcystin-LR. Environ Sci Pollut R 24(1):15–24. https://doi.org/10.1007/s11356-015-5758-y

    Article  CAS  Google Scholar 

  8. Neolaka YAB, Ngara ZS, Lawa Y, Naat JN, Benu DP, Chetouani A, Elmsellem H, Darmokoesoemo H, Kusuma HS (2019) Simple design and preliminary evaluation of continuous submerged solid small-scale laboratory photoreactor (CS4PR) using TiO2/NO3-@TC for dye degradation. J Environ Chem Eng 7(6):103482. https://doi.org/10.1016/j.jece.2019.103482

    Article  CAS  Google Scholar 

  9. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551. https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  10. Neolaka YAB, Ngara ZS, Lawa Y, Naat JN, Prasetyo Benu D, Chetouani A, Elmsellem H, Darmokoesoemo H, Septya Kusuma H (2019) Simple design and preliminary evaluation of continuous submerged solid small-scale laboratory photoreactor (CS4PR) using TiO2/NO3-@TC for dye degradation. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103482

    Article  Google Scholar 

  11. Sangam Naidu K, Palaniappan S (2020) Formation of PANI-PVA salt via H-bonding between PVA and PANI: aqueous coating for electrostatic discharge, sensor and corrosion applications. Sens Int. https://doi.org/10.1016/j.sintl.2020.100006

    Article  Google Scholar 

  12. Machida S, Miyata S (1989) Chemical synthesis of highly electrically conductive polypyrrole. Synth Metals 31:311–318

    Article  CAS  Google Scholar 

  13. Rai S, Bhujel R, Biswas J, Deka U, Swain BP (2020) Dark and photocurrent response of porous Si/GO-PANI and Si/rGO-PANI heterojunctions for photovoltaics applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.07.373

  14. Li Y, Kamdem P, Jin X-J (2021) Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.156608

    Article  Google Scholar 

  15. Li X, Chu J, Cheng Y, Yang F, Xiong S (2020) A novel PANI@Carbon dot hybrid with enhanced electrochemical and electrochromic properties. Mater Lett. https://doi.org/10.1016/j.matlet.2020.128081

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sönmezoğlu S, Taş R, Akın S, Can M (2012) Polyaniline micro-rods based heterojunction solar cell: structural and photovoltaic properties. Applied Physics Letters 101 (25). https://doi.org/10.1063/1.4772019

  17. Jangid NKJ, S Yadav, A Srivastava, M Kaur N. (2020) Polyaniline‑TiO2‑based photocatalysts for dyes degradation. Polymer Bulletin. https://doi.org/10.1007/s00289-020-03318-w

  18. Haspulat B, Topcu Sulak M, Kamis H (2016) Effect of Pb2+ and Cu2+ as a codopant on the structure, morphology and conductivity of nanostructured polyaniline. Part Sci Technol 35(4):426–433. https://doi.org/10.1080/02726351.2016.1163306

    Article  CAS  Google Scholar 

  19. Gülce H, Eskizeybek V, Haspulat B, Sarı F, Gülce A, Avcı A (2013) Preparation of a new polyaniline/CdO nanocomposite and investigation of its photocatalytic activity: comparative study under uv light and natural sunlight irradiation. Ind Eng Chem Res 52(32):10924–10934. https://doi.org/10.1021/ie401389e

    Article  CAS  Google Scholar 

  20. Haspulat B, Gulce A, Gulce H (2013) Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate. J Hazard Mater 260:518–526. https://doi.org/10.1016/j.jhazmat.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  21. Eskizeybek V, Sarı F, Gülce H, Gülce A, Avcı A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119–120:197–206. https://doi.org/10.1016/j.apcatb.2012.02.034

    Article  CAS  Google Scholar 

  22. Wang J, Yu X, Fu X, Zhu Y, Zhang Y (2021) Accelerating carrier separation of Ag3PO4 via synergetic effect of PANI and rGO for enhanced photocatalytic performance towards ciprofloxacin. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2020.105329

    Article  Google Scholar 

  23. Liao G, Chen S, Quan X, Zhang Y, Zhao H (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B 102(1–2):126–131. https://doi.org/10.1016/j.apcatb.2010.11.033

    Article  CAS  Google Scholar 

  24. Bhadra J, Parangusan H, Popelka A, Lehocky M, Humpolicek P, AlThani N (2020) Electrospun polystyrene/PANI-Ag fibers for organic dye removal and antibacterial application. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.103746

    Article  Google Scholar 

  25. Cheng Y, Song R, Wu K, Peng N, Yang M, Luo J, Zou T, Zuo Y, Liu Y (2020) The enhanced visible-light-driven antibacterial performances of PTCDI-PANI(Fe(III)-doped) heterostructure. J Hazard Mater 383:121166. https://doi.org/10.1016/j.jhazmat.2019.121166

    Article  CAS  PubMed  Google Scholar 

  26. Harfouche N, Nessark B, Perrin FX (2015) Electrochemical and surface characterization of composite material: Polyaniline/LiMn2O4. J Electroanal Chem 756:179–185. https://doi.org/10.1016/j.jelechem.2015.08.031

    Article  CAS  Google Scholar 

  27. Ezzati SN, Rabbani M, Leblan RM, Asadi E, Ezzati SMH, Rahimi R, Azodi-Deilami S (2015) Conducting, magnetic polyaniline/Ba0.25Sr0.75 Fe11(Ni0.5Mn0.5)O19 nanocomposite: fabrication, characterization and application. J Alloy Compd 646:1157–1164

    Article  CAS  Google Scholar 

  28. Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2008) Polyaniline nanoparticles with controlled sizes using a cross-linked carboxymethyl chitin template. J Nanopart Res 11(5):1167–1177. https://doi.org/10.1007/s11051-008-9515-8

    Article  CAS  Google Scholar 

  29. Mohamed MH, Dolatkhah A, Aboumourad T, Dehabadi L, Wilson LD (2015) Investigation of templated and supported polyaniline adsorbent materials. RSC Adv 5(9):6976–6984. https://doi.org/10.1039/c4ra07412b

    Article  CAS  Google Scholar 

  30. Shen Y, Zhao Q, Li X, Yuan D, Hou Y, Liu S (2012) Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: in situ FTIR investigation. J Hazard Mater 241–242:472–477. https://doi.org/10.1016/j.jhazmat.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  31. Tang J, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyanilINE. Synth Metals 24:231–238

    Article  CAS  Google Scholar 

  32. Ping Z, Nauer BGE, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc Faraday Trans 93(1):121–129. https://doi.org/10.1039/a604620g

    Article  CAS  Google Scholar 

  33. Moraes SR, Huerta-Vilca D, Motheo AJ (2004) Characteristics of polyaniline synthesized in phosphate buffer solution. Eur Polymer J 40(9):2033–2041. https://doi.org/10.1016/j.eurpolymj.2004.05.016

    Article  CAS  Google Scholar 

  34. Neolaka YAB, Supriyanto G, Kusuma HS (2018) Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. J Environ Chem Eng 6(2):3436–3443. https://doi.org/10.1016/j.jece.2018.04.053

    Article  CAS  Google Scholar 

  35. Neolaka YAB, Lawa Y, Naat JN, Pau Riwu AA, Darmokoesoemo H, Supriyanto G, Holdsworth CI, Amenaghawon AN, Kusuma HS (2020) A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2019.104451

    Article  Google Scholar 

  36. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS (2020) The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J Market Res 9(3):6544–6556. https://doi.org/10.1016/j.jmrt.2020.04.040

    Article  CAS  Google Scholar 

  37. Neolaka YAB, Supriyanto G, Kusuma HS (2019) Synthesis and Characterization of natural zeolite with ordered ion imprinted polymer structures (IIP@AFINZ) for selective Cr(VI) adsorption from aqueous solution. Moroc J Chem 7(1):194–210

    CAS  Google Scholar 

  38. Liu Y, Zhang YC, Xu XF (2009) Hydrothermal synthesis and photocatalytic activity of CdO2 nanocrystals. J Hazard Mater 163(2–3):1310–1314. https://doi.org/10.1016/j.jhazmat.2008.07.101

    Article  CAS  PubMed  Google Scholar 

  39. Wu W, Liang S, Shen L, Ding Z, Zheng H, Su W, Wu L (2012) Preparation, characterization and enhanced visible light photocatalytic activities of polyaniline/Bi3NbO7 nanocomposites. J Alloy Compd 520:213–219. https://doi.org/10.1016/j.jallcom.2012.01.021

    Article  CAS  Google Scholar 

  40. Baruah S, Kumar S, Nayak B, Puzari A (2020) Optoelectronically suitable graphene oxide-decorated titanium oxide/polyaniline hybrid nanocomposites and their enhanced photocatalytic activity with methylene blue and rhodamine B dye. Polym Bull 78(3):1703–1720. https://doi.org/10.1007/s00289-020-03182-8

    Article  CAS  Google Scholar 

  41. Biswas MRUD, Ho BS, Oh W-C (2019) Eco-friendly conductive polymer-based nanocomposites, BiVO4/graphene oxide/polyaniline for excellent photocatalytic performance. Polym Bull 77(8):4381–4400. https://doi.org/10.1007/s00289-019-02973-y

    Article  CAS  Google Scholar 

  42. Ge L, Han C, Liu J (2012) In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J Mater Chem. https://doi.org/10.1039/c2jm16241e

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bircan Haspulat Taymaz or Recep Taş.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haspulat Taymaz, B., Taş, R., Kamış, H. et al. Photocatalytic activity of polyaniline and neutral polyaniline for degradation of methylene blue and malachite green dyes under UV Light. Polym. Bull. 78, 2849–2865 (2021). https://doi.org/10.1007/s00289-021-03674-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03674-1

Keywords

Navigation