Skip to main content
Log in

Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Protein delivery journey through gastrointestinal (GI) tract faces many challenges due to its physicochemical instabilities, fugitive half-life, and less absorption efficiency. Herein, the aim is the study of both the encapsulation and in-vitro-release of the bovine serum albumin (BSA) through pHs of GI tract within the green synthesized interpolyelectrolyte complex, which was prepared from biodegradable polymers as XG and TMC-based highly an efficient pH-sensitive protein carrier to solve the drawbacks of the protein delivery through GI tract. The structures of XG/TMC PEC and BSA-loaded PEC were elucidated using different analysis tools like FTIR, FE-SEM, EDX, and XRD techniques. The BSA-loaded and released profiles were determined in pH 1.2 (gastric simulated pH) and pH 7.4 (intestine simulated pH) media. Best BSA-loaded results were obtained with the increase in XG concentration, BSA-loaded concentration, and encapsulation time. Moreover, in vitro BSA release results showed that the amount of BSA released in pH 7.4 was higher than that in pH 1.2 and also went up with the rise within the amount from 12 to 120 h to be 97.9% in pH 7.4 and 29.7% in pH 1.2 at 120 h. Moreover, according to SDS-PAGE technique, the BSA was released in intact form out of the PECs; thus, the encapsulation and released conditions did not affect the structural integrity of BSA structure. Finally, the cytotoxicity study of the prepared PEC showed safe and good biocompatibility properties against the traditional human melanocyte cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Kang F, Singh J (2001) Effect of additives on the release of a model protein from PLGA microspheres. AAPS PharmSciTech 2(4):86–92

    Article  PubMed Central  Google Scholar 

  2. Okamoto MM, Anhê GF, Sabino-Silva R, Marques MFDSF, Freitas HS, Mori RCT, Melo KFS, Machado UF (2011) Intensive insulin treatment induces insulin resistance in diabetic rats by impairing glucose metabolism-related mechanisms in muscle and liver. J Endocrinol 211(1):55–64

    Article  CAS  PubMed  Google Scholar 

  3. Rubin RR, Peyrot M, Kruger DF, Travis LB (2009) Barriers to insulin injection therapy. Diabetes Educ 35(6):1014–1022

    Article  PubMed  Google Scholar 

  4. Sosnik A, Augustine R (2016) Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 103:105–120

    Article  CAS  PubMed  Google Scholar 

  5. Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Soliman SM, Elella MHA, Ebrahim NA (2020) Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part I: lipids and fabrication techniques, nano-and micro-encapsulation-techniques and applications. IntechOpen, London

    Google Scholar 

  6. MacEwan SR, Callahan DJ, Chilkoti A (2010) Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine 5(5):793–806

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Zhang Z, Bao X, Xu G, Yao P (2018) Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf B 170:136–143

    Article  CAS  Google Scholar 

  8. Stopilha RT, Xavier-Júnior FH, De Vasconcelos CL, Fonseca JL (2020) Carboxymethylated-β-cyclodextrin/chitosan particles: bulk solids and aqueous dispersions. J Dispersion Sci Technol 41(5):717–724

    Article  CAS  Google Scholar 

  9. Benny IS, Gunasekar V, Ponnusami V (2014) Review on application of xanthan gum in drug delivery. Int J PharmTech Res 6(4):1322–1326

    CAS  Google Scholar 

  10. Bejenariu A, Popa M, Dulong V, Picton L, Le Cerf D (2009) Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behaviour. Polym Bull 62(4):525–538

    Article  CAS  Google Scholar 

  11. Kumar A, Rao KM, Han SS (2017) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym 180:128–144

    Article  PubMed  Google Scholar 

  12. Elella MHA, ElHafeez EA, Goda ES, Lee S, Yoon KR (2019) Smart bactericidal filter containing biodegradable polymers for crystal violet dye adsorption. Cellulose 26(17):9179–9206

    Article  Google Scholar 

  13. Elella MHA, Sabaa M, Hanna DH, Abdel-Aziz MM, Mohamed RR (2020) Antimicrobial pH-sensitive protein carrier based on modified xanthan gum. J Drug Deliv Sci Technol 57:101673

    Article  Google Scholar 

  14. Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, Ur Rehman A, Yoon KR (2020) Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng 9:104702

    Article  Google Scholar 

  15. Elella MHA, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125

    Article  PubMed  Google Scholar 

  16. Xu T, Xin M, Li M, Huang H, Zhou S, Liu J (2011) Synthesis, characterization, and antibacterial activity of N, O-quaternary ammonium chitosan. Carbohydr Res 346(15):2445–2450

    Article  CAS  PubMed  Google Scholar 

  17. Muzzarelli RA, Tanfani F (1985) The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydr Polym 5(4):297–307

    Article  CAS  Google Scholar 

  18. Sadeghi AM-M, Dorkoosh F, Avadi M, Saadat P, Rafiee-Tehrani M, Junginger H (2008) Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm 355(1–2):299–306

    Article  CAS  PubMed  Google Scholar 

  19. de Britto D, de Assis OB (2007) Synthesis and mechanical properties of quaternary salts of chitosan-based films for food application. Int J Biol Macromol 41(2):198–203

    Article  PubMed  Google Scholar 

  20. de Lima C, de Souza P, Stopilha R, de Morais W, Silva G, Nunes J, Wanderley Neto A, Pereira M, Fonseca J (2018) Formation and structure of chitosan–poly (sodium methacrylate) complex nanoparticles. J Dispers Sci Technol 39(1):83–91

    Article  Google Scholar 

  21. de Lima C, de Morais W, Silva G, Nunes J, Neto AW, Pereira M, Fonseca J (2017) Preparation and characterization of dispersions based on chitosan and poly (styrene sulfonate). Colloid Polym Sci 295(6):1071–1078

    Article  Google Scholar 

  22. de Britto D, Assis OB (2007) A novel method for obtaining a quaternary salt of chitosan. Carbohyd Polym 69(2):305–310

    Article  Google Scholar 

  23. Chen X, Lv G, Zhang J, Tang S, Yan Y, Wu Z, Su J, Wei J (2014) Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. Int J Nanomed 9:1957

    Article  Google Scholar 

  24. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92(1):719–725

    Article  CAS  PubMed  Google Scholar 

  25. Ray R, Maity S, Mandal S, Chatterjee TK, Sa B (2010) Development and evaluation of a new interpenetrating network bead of sodium carboxymethyl xanthan and sodium alginate for ibuprofen release. Pharmacol Pharm 1(1):9

    Article  CAS  Google Scholar 

  26. Long J, Yu X, Xu E, Wu Z, Xu X, Jin Z, Jiao A (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107

    Article  CAS  PubMed  Google Scholar 

  27. Peppas N (1986) Hydrogels in medicine and pharmacy, fundamentals, preparation method and structure of hydrogels, vol I. CRS Press, Boca Raton, Florida

    Google Scholar 

  28. Bueno VB, Petri DFS (2014) Xanthan hydrogel films: Molecular conformation, charge density and protein carriers. Carbohyd Polym 101:897–904

    Article  CAS  Google Scholar 

  29. Sahu SK, Prusty AK (2010) Design and evaluation of a nanoparticulate system prepared by biodegradable polymers for oral administration of protein drugs. Die Pharmazie-An Int J Pharm Sci 65(11):824–829

    CAS  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680

    Article  CAS  PubMed  Google Scholar 

  31. Repetto G, Del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125

    Article  CAS  PubMed  Google Scholar 

  32. Salama HE, Saad GR, Sabaa MW (2016) Synthesis, characterization, and biological activity of cross-linked chitosan biguanidine loaded with silver nanoparticles. J Biomater Sci Polym Ed 27(18):1880–1898

    Article  CAS  PubMed  Google Scholar 

  33. Tian F, Liu Y, Hu K, Zhao B (2004) Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydr Polym 57(1):31–37

    Article  CAS  Google Scholar 

  34. Rúnarsson ÖV, Malainer C, Holappa J, Sigurdsson ST, Másson M (2008) Tert-Butyldimethylsilyl O-protected chitosan and chitooligosaccharides: useful precursors for N-modifications in common organic solvents. Carbohydr Res 343(15):2576–2582

    Article  PubMed  Google Scholar 

  35. Sajomsang W, Gonil P, Saesoo S (2009) Synthesis and antibacterial activity of methylated N-(4-N, N-dimethylaminocinnamyl) chitosan chloride. Eur Polym J 45(8):2319–2328

    Article  CAS  Google Scholar 

  36. Avadi M, Sadeghi A, Tahzibi A, Bayati K, Pouladzadeh M, Zohuriaan-Mehr M, Rafiee-Tehrani M (2004) Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects. Eur Polym J 40(7):1355–1361

    Article  CAS  Google Scholar 

  37. Mohamed RR, Elella MHA, Sabaa MW (2017) Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly (acrylic acid). Int J Biol Macromol 98:302–313

    Article  CAS  PubMed  Google Scholar 

  38. Dai J, Yan H, Yang H, Cheng R (2010) Simple method for preparation of chitosan/poly (acrylic acid) blending hydrogel beads and adsorption of copper (II) from aqueous solutions. Chem Eng J 165(1):240–249

    Article  CAS  Google Scholar 

  39. de Souza Costa-Júnior E, Pereira MM, Mansur HS (2009) Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J Mater Sci Mater Med 20(2):553–561

    Article  PubMed  Google Scholar 

  40. Elella MHA, Mohamed RR, Abdel-Aziz MM, Sabaa MW (2018) Green synthesis of antimicrobial and antitumor N, N, N-trimethyl chitosan chloride/poly (acrylic acid)/silver nanocomposites. Int J Biol Macromol 111:706–716

    Article  PubMed  Google Scholar 

  41. Elella MHA, Mohamed RR, ElHafeez EA, Sabaa MW (2017) Synthesis of novel biodegradable antibacterial grafted xanthan gum. Carbohydr Polym 173:305–311

    Article  PubMed  Google Scholar 

  42. Mohamed RR, Elella MHA, Sabaa MW, Saad GR (2018) Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose 25(11):6513–6529

    Article  CAS  Google Scholar 

  43. Sabaa MW, Hanna DH, Elella MHA, Mohamed RR (2019) Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery. Mater Sci Eng C 94:1044–1055

    Article  CAS  Google Scholar 

  44. Elella MHA, Sabaa MW, ElHafeez EA, Mohamed RR (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int J Biol Macromol 137:1086–1101

    Article  PubMed  Google Scholar 

  45. Patel AS, Mishra P, Kanaujia PK, Husain SS, Prakash GV, Chakraborti A (2017) Investigating resonance energy transfer from protein molecules to van der Waals nanosheets. RSC Adv 7(42):26250–26255

    Article  CAS  Google Scholar 

  46. Jian-feng G, Chang-jun H, Mei Y, Dan-qun H, Huan-bao F (2016) Ultra-sensitive fluorescence determination of chromium (VI) in aqueous solution based on selectively etching of protein-stabled gold nanoclusters. RSC Adv 6(106):104693–104698

    Article  Google Scholar 

  47. Wang Q, Du YM, Fan LH (2005) Properties of chitosan/poly (vinyl alcohol) films for drug-controlled release. J Appl Polym Sci 96(3):808–813

    Article  CAS  Google Scholar 

  48. Du J, Sun R, Zhang S, Govender T, Zhang LF, Xiong CD, Peng YX (2004) Novel polyelectrolyte carboxymethyl konjac glucomannan–chitosan nanoparticles for drug delivery. Macromol Rapid Commun 25(9):954–958

    Article  CAS  Google Scholar 

  49. Bhattacharya SS, Ghosh AK, Banerjee S, Chattopadhyay P, Ghosh A (2012) Al3+ ion cross-linked interpenetrating polymeric network microbeads from tailored natural polysaccharides. Int J Biol Macromol 51(5):1173–1184

    Article  CAS  PubMed  Google Scholar 

  50. Soppimath KS, Kulkarni AR, Aminabhavi TM (2001) Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. J Control Release 75(3):331–345

    Article  CAS  PubMed  Google Scholar 

  51. Liu ZL, Hu H, Zhuo RX (2004) Konjac glucomannan-graft-acrylic acid hydrogels containing azo crosslinker for colon-specific delivery. J Polym Sci Part A Polym Chem 42(17):4370–4378

    Article  CAS  Google Scholar 

  52. Liu WG, Li F, Zhao XD, Yao KD, Liu QG (2002) Atom force microscopic characterisation of the interaction forces between bovine serum albumin and cross-linked alkylated chitosan membranes in media of different pH. Polym Int 51(12):1459–1463

    Article  CAS  Google Scholar 

  53. Li W, Xu R, Zheng L, Du J, Zhu Y, Huang R, Deng H (2012) LBL structured chitosan-layered silicate intercalated composites based fibrous mats for protein delivery. Carbohydr Polym 90(4):1656–1663

    Article  CAS  PubMed  Google Scholar 

  54. Schillemans JP, Hennink WE, van Nostrum CF (2010) The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels. Eur J Pharm Biopharm 76(3):329–335

    Article  CAS  PubMed  Google Scholar 

  55. Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65(3):243–252

    Article  CAS  Google Scholar 

  56. Benita S, Barkai A, Pathak Y (1990) Effect of drug loading extent on the in vitro release kinetic behaviour of nifedipine from polyacrylate microspheres. J Control Release 12(3):213–222

    Article  CAS  Google Scholar 

  57. Bhattacharya SS, Ghosh AK, Banerjee S, Chattopadhyay P, Ghosh A (2012) Al 3+ ion cross-linked interpenetrating polymeric network microbeads from tailored natural polysaccharides. Int J Biol Macromol 51(5):1173–1184

    Article  CAS  PubMed  Google Scholar 

  58. Maiti S, Ray S, Sa B (2008) Effect of formulation variables on entrapment efficiency and release characteristics of bovine serum albumin from carboxymethyl xanthan microparticles. Polym Adv Technol 19(7):922–927

    Article  CAS  Google Scholar 

  59. He Y, Yeung ES (2002) Rapid determination of protein molecular weight by the Ferguson method and multiplexed capillary electrophoresis. J Proteome Res 1(3):273–277

    Article  CAS  PubMed  Google Scholar 

  60. Li X, Kong X, Shi S, Zheng X, Guo G, Wei Y, Qian Z (2008) Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol 8(1):89

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pakzad Y, Ganji F (2016) Thermosensitive hydrogel for periodontal application: in vitro drug release, antibacterial activity and toxicity evaluation. J Biomater Appl 30(7):919–929

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. Abu Elella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Elella, M.H., Hanna, D.H., Mohamed, R.R. et al. Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym. Bull. 79, 2501–2522 (2022). https://doi.org/10.1007/s00289-021-03656-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03656-3

Keywords

Navigation