Skip to main content
Log in

Comparative studies of thermal and mechanical properties of macrocyclic versus linear polylactide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper reports the study of the influence of the macrocyclic or linear topology of polylactide (PLA) on its resulting thermal and mechanical properties, when displaying identical molar masses. Even if both macrocyclic and linear PLAs crystallize in the same α phase, the results of the calorimetric study and of the tensile tests show some differences which are directly related to the topology of the polymer. The glass transition temperature of macrocyclic PLA was found to be slightly higher than that of the linear one (56 vs 53 °C) while its melting temperature is lower (165 vs 171 °C). Moreover, the crystallization rate of the macrocyclic PLA is slower than that of the linear PLA. Regarding the tensile tests, it has been observed that the macrocyclic PLA displays an earlier strain-hardening than the linear one when stretched in the rubbery state. These differences were attributed to the fact that the macrocyclic topology involves a more constrained entangled network than its linear analogous and/or that the disentanglement kinetics is faster in linear PLA than in macrocyclic PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Auras R, Lim L-T, Selke SEM, Tsuji H (2010) Poly(Lactic Acid): Synthesis, structures, properties, processing, and applications. Wiley, Hoboken

    Book  Google Scholar 

  2. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci F 9:552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  CAS  Google Scholar 

  3. Slomkowski S, Penczek S, Duda A (2014) Polylactides: an overview. Polym Adv Tech 25(5):436–447. https://doi.org/10.1002/pat.3281

    Article  CAS  Google Scholar 

  4. Pawar RP, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical applications of poly(lactic acid). Recent Pat Regen Med 4:40–51. https://doi.org/10.2174/2210296504666140402235024

    Article  CAS  Google Scholar 

  5. Krishnan S, Pandey P, Mohanty S, Nayak SK (2016) Toughening of polylactic acid: an overview of research progress. Polym Plast Technol Eng 55(15):1623–1652. https://doi.org/10.1080/03602559.2015.1098698

    Article  CAS  Google Scholar 

  6. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46. https://doi.org/10.1016/j.addr.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  7. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176. https://doi.org/10.1021/cr040002s

    Article  CAS  PubMed  Google Scholar 

  8. Jérôme C, Lecomte P (2008) Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 60(9):1056–1076. https://doi.org/10.1016/j.addr.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Dagorne S, Normand M, Kirillov E, Carpentier J-F (2013) Gallium and indium complexes for ring-opening polymerization of cyclic ethers, esters and carbonates. Coord Chem Rev 257(11–12):1869–1886. https://doi.org/10.1016/j.ccr.2013.02.012

    Article  CAS  Google Scholar 

  10. Carpentier J-F (2010) Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-Lactones. Macromol Rapid Commun 31(19):1696–1705. https://doi.org/10.1002/marc.201000114

    Article  CAS  PubMed  Google Scholar 

  11. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. In: Degradable aliphatic polyesters. Adv. Polym. Sci., vol 157. Springer, Berlin, pp 113–138

  12. Bonnet F, Stoffelbach F, Fontaine G, Bourbigot S (2015) Continuous cyclo-polymerisation of L-lactide by reactive extrusion using atoxic metal-based catalysts: easy access to well-defined polylactide macrocycles. RSC Adv 5(40):31303–31310. https://doi.org/10.1039/C4RA16634E

    Article  CAS  Google Scholar 

  13. Roovers J (2002) Chapter 10: organic cyclic polymers. In: Semlyen JA (ed) Cyclic polymers, 2nd edn. Kluwer, Dordrecht, pp 347–383

    Chapter  Google Scholar 

  14. Kricheldorf HR (2010) Cyclic polymers: Synthetic strategies and physical properties. J Polym Sci A Polym Chem 48(2):251–284. https://doi.org/10.1002/pola.23755

    Article  CAS  Google Scholar 

  15. Hoskins JN, Grayson SM (2009) Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone). Macromolecules 42(17):6406–6413. https://doi.org/10.1021/ma9011076

    Article  CAS  Google Scholar 

  16. Nasongkla N, Chen B, Macaraeg N, Fox ME, Fréchet JMJ, Szoka FC (2009) Dependence of Pharmacokinetics and Biodistribution on Polymer Architecture: Effect of Cyclic versus Linear Polymers. J Am Chem Soc 131(11):3842–3843. https://doi.org/10.1021/ja900062u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen B, Jerger K, Fréchet JM, Szoka FC (2009) The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J Control Release 140(3):203–209. https://doi.org/10.1016/j.jconrel.2009.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chisholm MH, Gallucci JC, Yin H (2006) Cyclic esters and cyclodepsipeptides derived from lactide and 2,5-morpholinediones. Proc Natl Acad Sci U S A 103(42):15315–15320. https://doi.org/10.1073/pnas.0602662103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zaldua N, Liénard R, Josse T, Zubitur M, Mugica A, Iturrospe A, Arbe A, De Winter J, Coulembier O, Müller AJ (2018) Influence of chain topology (cyclic versus linear) on the nucleation and isothermal crystallization of poly(l-lactide) and poly(d-lactide). Macromolecules 51(5):1718–1732. https://doi.org/10.1021/acs.macromol.7b02638

    Article  CAS  Google Scholar 

  20. Stoclet G, Lefebvre JM, Séguéla R, Vanmansart C (2014) In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing. Polymer 55(7):1817–1828. https://doi.org/10.1016/j.polymer.2014.02.010

    Article  CAS  Google Scholar 

  21. Dorgan JR, Williams JS, Lewis DN (1999) Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. J Rheol 43(5):1141–1155. https://doi.org/10.1122/1.551041

    Article  CAS  Google Scholar 

  22. Cooper-White JJ, Mackay ME (1999) Rheological properties of poly(lactides) effect of molecular weight and temperature on the viscoelasticity of poly(l-lactic acid). J Polym Sci Part B Polym Phys 37(15):1803–1814. doi:10.1002/(SICI)1099–0488(19990801)37:15<1803:AID-POLB5>3.0.CO;2-M

  23. Cendrowski-Guillaume SM, Le Gland G, Nierlich M, Ephritikhine M (2000) Lanthanide borohydrides as precursors to organometallic compounds. Mono(cyclooctatetraenyl) Neodymium Complexes. Organometallics 19(26):5654–5660. https://doi.org/10.1021/om000558f

    Article  CAS  Google Scholar 

  24. Nakayama Y, Sasaki K, Watabane N (2009) Ring-opening polymerization of six-membered cyclic esters catalyzed by tetrahydroborate complexes of rare earth metals. Polymer 50(20):4788–4793. https://doi.org/10.1016/j.polymer.2009.08.024

    Article  CAS  Google Scholar 

  25. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z.u.Z. Polymere 251(1):980–990

    Article  CAS  Google Scholar 

  26. Stoclet G, Seguela R, Lefebvre JM, Elkoun S, Vanmansart C (2010) Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 43(3):1488–1498. https://doi.org/10.1021/ma9024366

    Article  CAS  Google Scholar 

  27. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci Part B Polym Phys 42(1):25–32. https://doi.org/10.1002/polb.10674

    Article  CAS  Google Scholar 

  28. Di Lorenzo ML (2006) Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J Appl Polym Sci 100(4):3145–3151. https://doi.org/10.1002/app.23136

    Article  CAS  Google Scholar 

  29. Pérez-Camargo RA, Mugica A, Zubitur M, Müller AJ (2017) Crystallization of cyclic polymers. In: Auriemma F, Alfonso GC, de Rosa C (eds) Polymer Crystallization I. Advances in polymer science, vol 276. Springer, Cham, pp 93–132

    Chapter  Google Scholar 

  30. Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N (2009) Effect of polylactide stereocomplex on the crystallization behavior of poly(l-lactic acid). Macromolecules 42(13):4739–4745. https://doi.org/10.1021/ma900004d

    Article  CAS  Google Scholar 

  31. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41(4):1352–1357. https://doi.org/10.1021/ma0706071

    Article  CAS  Google Scholar 

  32. Stoclet G, Seguela R, Lefebvre JM, Rochas C (2010) New insights on the strain-induced mesophase of poly(d, l-lactide): In situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 43(17):7228–7237. https://doi.org/10.1021/ma101430c

    Article  CAS  Google Scholar 

  33. Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48(2):395–403. https://doi.org/10.1122/1.1645516

    Article  CAS  Google Scholar 

  34. Doi Y, Matsubara K, Ohta Y, Nakano T, Kawaguchi D, Takahashi Y, Kawagushi D, Takahashi Y, Takano A, Matsushita Y (2015) Melt rheology of ring polystyrenes with ultrahigh purity. Macromolecules 48(9):3140–3147. https://doi.org/10.1021/acs.macromol.5b00076

    Article  CAS  Google Scholar 

  35. Wu S (1992) Predicting chain conformation and entanglement of polymers from chemical structure. Polym Eng Sci 32(12):823–830. https://doi.org/10.1002/pen.760321209

    Article  CAS  Google Scholar 

  36. Joziasse CAP, Veenstra H, Grijpma DW, Pennings AJ (1996) On the chain stiffness of poly(lactide)s. Macromol Chem Phys 197(7):2219–2229. https://doi.org/10.1002/macp.1996.021970713

    Article  CAS  Google Scholar 

  37. Grijpma DW, Penning JP, Pennings AJ (1994) Chain entanglement, mechanical properties and drawability of poly(lactide). Colloid Polym Sci 272(9):1068–1081. https://doi.org/10.1007/BF00652375

    Article  CAS  Google Scholar 

  38. Subramanian G, Shanbhag S (2008) Conformational properties of blends of cyclic and linear polymer melts. Phys Rev E Stat Nonlinear Soft Matter Phys. https://doi.org/10.1103/PhysRevE.77.011801

    Article  Google Scholar 

  39. Lee E, Kim S, Jung YJ (2015) Slowing down of ring polymer diffusion caused by inter-ring threading. Macromol Rapid Commun 36(11):1115–1121. https://doi.org/10.1002/marc.201400713

    Article  CAS  PubMed  Google Scholar 

  40. Tsalikis DG, Mavrantzas VG (2014) Threading of ring poly(ethylene oxide) molecules by linear chains in the melt. ACS Macro Lett 3(8):763–766. https://doi.org/10.1021/mz5002096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aurélie Malfait for SEC analysis, Dr François Stoffelbach for MALDI-ToF analysis, CNRS and Région Hauts de France for fundings. The project ARCHI-CM, Chevreul Institute (FR 2638), Ministère de l'Enseignement Supérieur et de la Recherche, Région Nord-Pas de Calais and European Regional Development Fund (FEDER) are acknowledged for supporting and funding the SAXS-WAXS laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanny Bonnet or Grégory Stoclet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louisy, E., Fontaine, G., Gaucher, V. et al. Comparative studies of thermal and mechanical properties of macrocyclic versus linear polylactide. Polym. Bull. 78, 3763–3783 (2021). https://doi.org/10.1007/s00289-020-03290-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03290-5

Keywords

Navigation