Skip to main content
Log in

Temperature dependence of the specific volume of Lennard-Jones potential and applying in case of polymers and other materials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Based on solutions of the Ornstein–Zernike equation, we derive analytical formula for the specific volume of polymers interacting through Lennard-Jones potential. We use mean spherical approximation assuming that the system is of low density, homogeneous, isotropic and composed of one component. The specific volumes of some polymers in addition to the minimum volumes of Lennard-Jones potential and the specific volumes of proteinogenic amino acids: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V, are calculated according to that formula. We show that the simple formula we derive is reliable and agrees well with results obtained from experimental and fitting reported in other studies. We believe that it can be used for many systems described by Lennard-Jones potential such as biological systems, soft matter systems, large molecules such as polymers and inert gases fluids like liquid argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  1. Nägele G (2004) The physics of colloidal soft matter. Centre of Excellence for Advanced Materials and Structures, Warsaw

  2. Fantoni R (2003) Classical liquids: exact results, integral equations theory, and Monte Carlo simulations. Trieste, Italy

    Google Scholar 

  3. Osiele OM (2006) Calculation of the structure factor of liquid metals. Niger J Phys 25:32. https://doi.org/10.4314/njphy.v18i1.38078

    Article  Google Scholar 

  4. Bandyopadhyay P, Gupta-Bhaya P (2019) A comparative evaluation of pair correlation functions for a highly asymmetric electrolyte with mono and divalent counterions from integral equation theory in hypernetted chain (HNC) approximation and Monte Carlo simulation. Chem Phys Lett 732:136664. https://doi.org/10.1016/j.cplett.2019.136664

    Article  CAS  Google Scholar 

  5. Al-Raeei M (2018) Using methods of statistical mechanics in the study of soft condensed matter materials and complex structures. Syrian Arab Republic, Damascus

    Google Scholar 

  6. McDonald JH (2006) Theory of simple liquids. Elsevier, Amsterdam

    Google Scholar 

  7. Al-Raeei M, El-Daher MS (2018) Analytical static structure factor for a two-component system interacting via van der Waals potential. Pramana J Phys 90:60. https://doi.org/10.1007/s12043-018-1550-0

    Article  CAS  Google Scholar 

  8. Waisman E et al (1973) Ornstein–Zernike equation for a two-Yukawa c(r). Chem Phys Lett 40:514–516. https://doi.org/10.1016/0009-2614(76)85132-9

    Article  Google Scholar 

  9. Song Chen JL et al (2018) A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer. J Polym Eng. https://doi.org/10.1515/polyeng-2017-0374

    Article  Google Scholar 

  10. Zarezadeh Z, Costantini G (2019) Lorentz excitable lattice gas automata (LELGA) for optimization of Lennard-Jones atomic cluster size up to N ≤ 383. Chem Phys Lett 727:45–49. https://doi.org/10.1016/j.cplett.2019.04.046

    Article  CAS  Google Scholar 

  11. Baidakov VG, Bryukhanov VM (2018) Molecular dynamics simulation of bubble nucleation in two-component Lennard-Jones solutions. Chem Phys Lett 713:85–90. https://doi.org/10.1016/j.cplett.2018.10.010

    Article  CAS  Google Scholar 

  12. Sahputra IH, Echtermeyer IA (2013) Effects of temperature and strain rate on the deformation of amorphous polyethylene: a comparison between molecular dynamics simulations and experimental results. Model Simul Mater Sci Eng 21:065016. https://doi.org/10.1088/0965-0393/21/6/065016

    Article  CAS  Google Scholar 

  13. Arends CB (1993) On the applicability of the Lennard-Jones potential function to amorphous high polymers. J Appl Polym Sci 49:1931–1938. https://doi.org/10.1002/app.1993.070491108

    Article  CAS  Google Scholar 

  14. Seitz JT (1993) The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci 49:1331–1351. https://doi.org/10.1002/app.1993.070490802

    Article  CAS  Google Scholar 

  15. Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc Lond A 106:463–477. https://doi.org/10.1098/rspa.1924.0082

    Article  CAS  Google Scholar 

  16. Yadav CP, Pandey DK (2019) Pressure- and orientation-dependent elastic and ultrasonic characterisation of wurtzite boron nitride. Pramana J Phys 92:5. https://doi.org/10.1007/s12043-018-1666-2

    Article  CAS  Google Scholar 

  17. Igor N et al (1997) Representation of amino acid sequences in terms of interaction energy in protein globules. Fed Eur Biochem Soc Lett 418:43–46. https://doi.org/10.1016/S0014-5793(97)01346-X

    Article  Google Scholar 

  18. Wagner AF (2011) Optimization of van der Waals energy for protein side-chain placement and design. Biophys J 101:1690–1698. https://doi.org/10.1016/j.bpj.2011.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goujon F, Ghoufi A, Malfreyt P (2018) Size-effects on the surface tension near the critical point: Monte Carlo simulations of the Lennard-Jones fluid. Chem Phys Lett 694:60–64. https://doi.org/10.1016/j.cplett.2018.01.046

    Article  CAS  Google Scholar 

  20. Eliot Boulanger LH et al (2018) Optimized Lennard-Jones parameters for drug-like small molecules. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.8b00172

    Article  PubMed  PubMed Central  Google Scholar 

  21. Handrey C, Ferraz F (2019) Influence of the long-range forces in non-Gaussian random-packing dynamics. Phys Lett A 383:125884. https://doi.org/10.1016/j.physleta.2019.125884

    Article  CAS  Google Scholar 

  22. Zhu F, Sha H (2017) Parameter optimization for interaction between C-terminal domains of HIV-1 capsid protein. J Chem Inf Model 57:1134–1141. https://doi.org/10.1021/acs.jcim.7b00011

    Article  CAS  PubMed  Google Scholar 

  23. Al-Raeei M, El-Daher MS (2019) A numerical method for fractional Schrödinger equation of Lennard-Jones potential. Phys Lett A 383:125831. https://doi.org/10.1016/j.physleta.2019.07.019

    Article  CAS  Google Scholar 

  24. Kim J et al (2017) Weyl node assisted conductivity switch in interfacial phase-change memory with van derWaals interfaces. Phys Rev B 96:235304. https://doi.org/10.1103/PhysRevB.96.235304

    Article  Google Scholar 

  25. Ziherl P (2014) Physics of soft matter. Faculty of Mathematics and Physics, University of Ljubljana,  Ljubljana

  26. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  27. Wang Y, Wang C, Tan H (2019) Intrinsic edge warping of graphene nanoribbon boost molecular directional motion: toward the novel nanodevices. Phys Lett A 383:1473–1477. https://doi.org/10.1016/j.physleta.2019.01.054

    Article  CAS  Google Scholar 

  28. Barbante P, Frezzotti A (2017) A comparison of models for the evaporation of the Lennard-Jones fluid. Eur J Mech B/Fluids. https://doi.org/10.1016/j.euromechflu.2017.01.020

    Article  Google Scholar 

  29. Al-Raeei M, El-Daher MS (2019) Analytical formula of heat capacity in soft matter materials using Lennard-Jones potential. Chem Phys Lett 734:136729. https://doi.org/10.1016/j.cplett.2019.136729

    Article  CAS  Google Scholar 

  30. Miyata T, Tange K (2018) Performance of Kobryn–Gusarov–Kovalenko closure from a thermodynamic viewpoint for one-component Lennard-Jones fluids. Chem Phys Lett 700:88–95. https://doi.org/10.1016/j.cplett.2018.04.013

    Article  CAS  Google Scholar 

  31. Ushcats S et al (2018) Asymptotics of activity series at the divergence point. Pramana J Phys 91:31. https://doi.org/10.1007/s12043-018-1604-3

    Article  Google Scholar 

  32. Liang C, Pu K, Li-Yan Q, Zhi-Gang Z (2017) Nonequilibrium thermodynamics and fluctuation relations for small systems. Chin Phys B. https://doi.org/10.1088/1674-1056/23/7/070501

    Article  Google Scholar 

  33. Vincenzo Molinari DM (2016) The specific heat of liquid helium. J Comput Theor Transp. https://doi.org/10.1080/23324309.2016.1156549

    Article  Google Scholar 

  34. Vargas P et al (2001) Second virial coefficient for the Lennard-Jones potential. Phys A. https://doi.org/10.1016/S0378-4371(00)00362-9

    Article  Google Scholar 

  35. Al-Raeei M, El-Daher MS (2019) On: new optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (G′/G)-expansion method. Pramana J Phys 94:9. https://doi.org/10.1007/s12043-019-1877-1

    Article  Google Scholar 

  36. Arends CB (1994) A phenomenology based equation of state for polymer melts. J Appl Polym Sci 517:11–719. https://doi.org/10.1002/app.1994.070510417

    Article  Google Scholar 

  37. Zhou S, Solana JR (2017) Thermodynamic properties of diamond and wurtzite model fluids from computer simulation and thermodynamic perturbation theory. Phys A 493:342–358. https://doi.org/10.1016/j.physa.2017.10.016

    Article  CAS  Google Scholar 

  38. Zhou S, Solana JR (2017) Thermodynamic properties of fluids with Lennard–Jones–Gauss potential from computer simulation and the coupling parameter series expansion. Mol Phys 116:491. https://doi.org/10.1080/00268976.2017.1406162

    Article  CAS  Google Scholar 

  39. Venkatanarayanan SK et al (2016) Simulated dilatometry and static deformation prediction of glass transition and mechanical properties of polyacetylene and poly (para-phenylene vinylene). Macromol Theory Simul 25:238–253. https://doi.org/10.1002/mats.201600006

    Article  CAS  Google Scholar 

  40. Zamyatnin AA (1972) Protein volume in solution. Prog Biophys Mol Biol 24:107–123. https://doi.org/10.1016/0079-6107(72)90005-3

    Article  CAS  PubMed  Google Scholar 

  41. Zhou S (2018) Padé approximant for hard sphere + square well and hard sphere + square well + square shoulder model fluids. Phys A 512:1260–1277. https://doi.org/10.1016/j.physa.2018.08.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Al-Raeei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Raeei, M., El-Daher, M.S. Temperature dependence of the specific volume of Lennard-Jones potential and applying in case of polymers and other materials. Polym. Bull. 78, 1453–1463 (2021). https://doi.org/10.1007/s00289-020-03166-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03166-8

Keywords

Navigation