Skip to main content

Advertisement

Log in

Fabrication and physicochemical properties of glass fabric–multifunctional epoxy resin composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

(2E,6E)2,6-Bis(4-amino benzylidene)cyclohexanone (BABC) was synthesized and used as a curing agent for tetrafunctional epoxy resin of bisphenol-C-formaldehyde (EBCF). Cured resin (EBCF–BABC) was characterized by FTIR, DSC and TGA techniques. No glass transition temperature was clearly detected due to overlapping of degradation steps with baseline shifting resulted distorted broad endothermic transition centered at about 236 °C and further was supplemented by TGA thermogram showing weight loss at that temperature. EBCF–BABC is thermally stable up to 175 °C and followed two-step degradation reactions. The first step has involved about 20% weight loss over 175–350 °C with temperature of maximum weight loss at about 217 °C. Similarly, the second step has involved about 52% weight loss over 350–500 °C with temperature of maximum weight loss at 412 °C. A 5.24-mm-thick glass fabric composite (G–EBCF–BABC) showed 140 MPa tensile strength, 192.3 MPa flexural strength, 7.524 GPa flexural modulus, 33.3 kJ m−2 impact strength, 38 Barcol hardness, 9 kV mm−1 electric strength, 3.6 × 1012  Ω cm volume resistivity and 12.4% equilibrium water absorption. Good thermomechanical, electrical and excellent hydrolytic stability of G–EBCF–BABC signified its usefulness for low load-bearing housing, electrical and electronic and marine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faghihi K, Moghanian H (2010) Synthesis and characterization of new optically active poly(amide-imide)s based on N,N′-(pyromellitoyl)-bis-l-amino acids and 1,3,4-oxadiazole moieties. Des Monomers Polym 13:207–220

    CAS  Google Scholar 

  2. Faghihi K, Feyzi A, Isfahani HN (2010) Synthesis and characterization of new optically active poly(amide-imide)s based on N,N′-(bicyclo[2]oct-7-ene-2,3,5,6-tetra carboxylic)-bis-l-2-aminobutyric acid. Des Monomers Polym 13:131–142

    CAS  Google Scholar 

  3. Balakrishnan PS, Murugavel SC (2009) Spectral, thermal, and photoreactivity studies on epoxy resin containing benzylidene units in the main chain. J Appl Polym Sci 111:2340–2344

    CAS  Google Scholar 

  4. Faghihi K, Mozafari Z (2008) Synthesis and properties of novel photosensitive poly (amide-imide) s containing chalcone moiety and aromatic diamines in the main chain. Turk J Chem 32:673–683

    CAS  Google Scholar 

  5. Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4176

    CAS  PubMed  Google Scholar 

  6. Gupta P, Trenor SR, Long TE, Wilkes GL (2004) In situ photo-cross-linking of cinnamate functionalized poly (methyl methacrylate-co-2-hydroxyethyl acrylate) fibers during electrospinning. Macromolecules 37:9211–9218

    CAS  Google Scholar 

  7. Hajibeygi M, Faghihi K, Shabanian M (2011) Synthesis and characterization of novel heat resistance poly(amide-imide)s from N,N′-[2,5-bis(4-aminobenzylidene)cyclopentanone] bistrimellitimide acid and various aromatic diamines. J Appl Polym Sci 121:2877–2885

    CAS  Google Scholar 

  8. Duvvuru D, Pinto N, Gomez C, Betzer J-F, Retailleau P, Voituriez A, Marinetti A (2012) Heterocyclic spiranes and dispiranes via enantioselective phosphine-catalyzed [3+2] annulations. Adv Synth Catal 354:408–414

    CAS  Google Scholar 

  9. Wu CC, Lee WJ (2010) Synthesis and properties of copolymer epoxy resins prepared from copolymerization of bisphenol-A, epichlorohydrin, and liquefied dendrocalamus latiflorus. J Appl Polym Sci 116:2065–2073

    CAS  Google Scholar 

  10. Lin CH, Huang JM, Wang CS (2002) Synthesis, characterization and properties of tetramethyl stilbene-based epoxy resins for electronic encapsulation. Polymer 43:2959–2967

    CAS  Google Scholar 

  11. Su WF, Lee YC, Pan WP (2002) Thermal properties of phthalic anhydride-and phenolic resin-cured rigid rod epoxy resins. Thermochim Acta 392:395–398

    Google Scholar 

  12. Huang X, Patham B (2013) Experimental characterization of a curing thermoset epoxy-anhydride system-Isothermal and nonisothermal cure kinetics. J Appl Polym Sci 127:1959–1966

    CAS  Google Scholar 

  13. Shokralla SA, Al-Muaikel NS (2010) Thermal properties of epoxy (DGEBA)/phenolic resin (novolac) blends. Arab J Sci Eng 35:7–14

    CAS  Google Scholar 

  14. Bajpai P, Bajpai M (2010) Development of a high performance hybrid epoxy silicone resin for coatings. Pigment Resin Technol 39:96–100

    CAS  Google Scholar 

  15. Tao Z, Yang S, Ge Z, Chen J, Fan L (2007) Synthesis and properties of novel fluorinated epoxy resins based on 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoro ethane. Eur Polym J 43:550–560

    CAS  Google Scholar 

  16. Samanta B, Maity T, Dalai S, Banthia A (2008) Influences of amine-terminated oligomers on glass fibre-epoxy composite. Pigment Resin Technol 37:3–8

    CAS  Google Scholar 

  17. Mishra G, Mohapatra S, Behera P, Dash B, Mohanty U, Ray B (2010) Environmental stability of GFRP laminated composites: an emphasis on mechanical behaviour. Aircr Eng Aerosp Technol 82:258–266

    Google Scholar 

  18. Thulasiraman V, Rakesh S, Sarojadevi M (2009) Synthesis and characterization of chlorinated soy oil based epoxy resin/glass fiber composites. Polym Compos 30:49–58

    CAS  Google Scholar 

  19. Patel JP, Parsania PH (2017) Fabrication and comparative mechanical, electrical and water absorption characteristic properties of multifunctional epoxy resin of bisphenol-C and commercial epoxy-treated and-untreated jute fiber-reinforced composites. Polym Bull 74(2):485–504

    CAS  Google Scholar 

  20. Wongajaiyen T, Brostow W, Chonkaew W (2018) Tensile properties and wear resistance of epoxy nanocomposites reinforced with cellulose nanofibers. Polym Bull 75:2039–2051

    Google Scholar 

  21. Bilyeu B, Brostow W, Menard KP (1999) Epoxy thermosets and their applications. I. Chemical structures. J Mater Educ 21:281–286

    CAS  Google Scholar 

  22. Bilyeu B, Brostow W, Menard KP (2000) Epoxy thermosets and their applications. II. Thermal analysis. J Mater Educ 22:107–129

    Google Scholar 

  23. Bilyeu B, Brostow W, Menard KP (2001) Epoxy thermosets and their applications. III. Kinetic equations and models. J Mater Educ 23:189–204

    Google Scholar 

  24. Bilyeu B, Brostow W, Menard KP (2002) Separation of gelation from vitrification in curing of a fiber-reinforced epoxy composite. Polym Compos 23:1111–1119

    CAS  Google Scholar 

  25. Tomuta AM, Ramis X, Ferrando F, Serra A (2012) The use of dihydrazides as latent curing agents in diglycidyl ether of bisphenol A coatings. Prog in Org Coat 74:59–66

    CAS  Google Scholar 

  26. Jens R, George GA, Frederich V (2013) Curing kinetics and thermomechanical behaviour of co-anhydride cured aminoglycidyl epoxy resins. Polym Int 52(2003):1758–1766

    Google Scholar 

  27. Musto P, Martuscelli E, Ragosta G, Mascia L (2001) Cure kinetics and ultimate properties of a tetrafunctional epoxy resin toughened by a perfluoro-ether oligomer. Polymer 42:5189–5198

    CAS  Google Scholar 

  28. Artner J, Ciesielski M, Walter O, Döring M, Perez RM, Sandler JKW, Altstädt V, Schartel B (2008) A Novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems. Macromol Mater Eng 293(6):503–514

    CAS  Google Scholar 

  29. Liu W, Qiu Q, Wang J, Huo Z, Sun H (2008) Curing kinetics and properties of epoxy resin–fluorenyl diamine. Polymer 49:4399–4405

    CAS  Google Scholar 

  30. Xie MR, Wang ZG, Zhao YF (2001) Synthesis and properties of a novel, liquid, trifunctional, cycloaliphatic epoxide. J Polym Sci Part A Polym Chem 39:2799–2804

    CAS  Google Scholar 

  31. Lin LL, Ho TM, Wang CS (1997) Synthesis of novel trifunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. Polymer 38:1997–2003

    CAS  Google Scholar 

  32. Wang CS, Li MC (1998) Synthesis and modification of a naphthalene-containing trifunctional epoxy resin for electronic applications. J Appl Polym Sci 70:1907–1921

    CAS  Google Scholar 

  33. Vogel AI, Tatchell AR, Funis BS, Hannaford AJ, Smith PWG (1998) Vogel’s textbook of practical organic chemistry, 5th edn. Addison Wesley Longman Ltd., London, p 395

    Google Scholar 

  34. Patel JP, Adroja PP, Parsania PH (2013) Synthesis and physico-chemical study of multifunctional cardo epoxy resin and its jute fiber reinforced silica filled and unfilled composites. J Polym Mater 30:53–64

    CAS  Google Scholar 

  35. Patel Jignesh P, Parsania PH (2019) Synthesis, spectral and thermal study of (2E,6E)-2,6-bis(4-amino benzylidene)cyclohexanone. World Sci News 124(2):312–318

    Google Scholar 

  36. Ellis B (1993) Chemistry and technology of epoxy resins. Springer, Berlin, pp 1–36

    Google Scholar 

  37. Hamerton I (1996) Recent developments in epoxy resins. Smithers Rapra Publishing, Akron

    Google Scholar 

  38. May CA (1987) Epoxy resins: chemistry and technology. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  39. Lee H, Neville K (1972) Handbook of epoxy resin. McGraw Hill, New York

    Google Scholar 

  40. Patel Jignesh P, Parsania PH (2014) Spectral and thermal behavior of aromatic and aliphatic amines cured cardo group containing multifunctional epoxy Resin. Adv Polym Technol 33:1–5

    Google Scholar 

  41. Patel JP, Bhatt RD, Parsania PH (2014) Studies on bismaleamic acids cured tetrafunctional epoxy resin of bisphenol-C and glass-epoxy composites. Adv Polym Technol 33:S1. https://doi.org/10.1002/adv.21457(E1-9)

    Article  Google Scholar 

  42. Anderson DA, Freeman ES (1961) Kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54:253–260

    CAS  Google Scholar 

  43. Grassie N, Guy MI, Tennent NH (1986) Degradation of epoxy polymers: part 4-thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym Degrad Stab 14:125–137

    CAS  Google Scholar 

  44. Levchik SV, Camino GM, Luda PL, Costa B, Costes Y, Henry Y, Morel E, Muller G (1995) Mechanistic study of thermal behavior and combustion performance of epoxy resins: I homopolymerized TGDDM. Polym for Adv Technol 6:53–62

    CAS  Google Scholar 

  45. Kagathara VM, Parsania PH (2002) Thermal analysis of cured chloro epoxy resins and epoxy–acrylate–styrene copolymers. Polym Test 21:659–663

    CAS  Google Scholar 

  46. Adroja PP, Koradiya SB, Parsania PH (2011) Synthesis, curing behavior and characterization of epoxyacrylate and triethylamine cured epoxy resin of 1,1′-bis(3-methyl-4-hydroxy phenyl) cyclohexane. Polym Plast Technol Eng 50:52–58

    CAS  Google Scholar 

  47. Mer PK, Parsania PH (2011) Synthesis and thermal study of cured epoxy-acrylate-maleate, unsaturated polyester and their interpenetrating networks of varying compositions. Polym Plast Technol Eng 50:282–287

    CAS  Google Scholar 

  48. Dutta S, Karak N, Baruah S (2010) Jute-fiber-reinforced polyurethane green composites based on Mesua ferrea L. seed oil. J App Polym Sci 115:843–850

    CAS  Google Scholar 

  49. Ray D, Sarkar BK, Das S, Rana AK (2002) Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres. Compos Sci Technol 62:911–917

    CAS  Google Scholar 

  50. Mavani SI, Mehta NM, Parsania PH (2006) Synthesis and physicochemical study of bisphenol-C-formaldehyde-toluene diisocyanate polyurethane–jute and jute–rice husk/wheat husk composites. J Appl Polym Sci 101:2363–2370

    CAS  Google Scholar 

  51. Biro DA, McLean P, Deslandes Y (1991) Application of the microbond technique: characterization of carbon fiber-epoxy interfaces. Polym Eng Sci 31:1250–1260

    CAS  Google Scholar 

  52. International Cast Polymer Alliance (2003) Solid surface properties and applications. Arlington, ICPA, p 8

    Google Scholar 

  53. Brostow W, Hagg Lobland HE (2010) Brittleness of materials: implications for composites and relation to impact strength. J Mater Sci 45:242–250

    CAS  Google Scholar 

  54. Bao LR, Yee AF (2008) Effect of temperature on moisture absorption in a bismalimide resin and its carbon fiber composites. Polymer 43:3987–3997

    Google Scholar 

  55. Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35:1267–1276

    Google Scholar 

  56. Gassan J, Bledzki AK (1997) The influence of fiber-surface treatment on mechanical properties of jute-polypropylene composites. Compos Part A Appl Sci Manuf 28:1001–1005

    Google Scholar 

  57. Collings TA (1994) Moisture absorption–Fickian diffusion kinetics and moisture profiles. In: Jones FR (ed) Handbook of polymer fibre composites. Longman Scientific and Technical, UK, pp 366–371

  58. Crank J, Park GS (1968) Diffusion in polymers. Academic Press, New York

    Google Scholar 

  59. Tyberg CS, Bergeron K, Sankarapandian M, Shih P, Loos AC, Dillard DA, McGrath J, Riffle J, Sorathia U (2000) Structure property relationships of void-free phenolic–epoxy matrix materials. Polymer 41:5053–5062

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director TIPCO industries Ltd., Valsad—Gujarat, India, for testing facilities and UGC—New Delhi and DST—New Delhi for instrumentation grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasotam H. Parsania.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsania, P.H., Patel, J.P. Fabrication and physicochemical properties of glass fabric–multifunctional epoxy resin composite. Polym. Bull. 77, 1667–1679 (2020). https://doi.org/10.1007/s00289-019-02809-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02809-9

Keywords

Navigation