Skip to main content
Log in

Thermal degradation and combustion behavior of flame-retardant epoxy resins with novel phosphorus-based flame retardants and silicon particles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The investigation focuses on the effect of silicon particles (Si) and phosphorus-based flame retardants on the flame retardancy of epoxy resins. The flame-retardant properties have been studied by limiting oxygen index, vertical burning test, cone calorimeter test and micro-combustion calorimeter. The results demonstrate that Si, FR and APP can greatly improve the flame-retardant and thermal properties. It is found that the addition of Si/APP/FR can promote the formation of stable char layers, indicating the condensed-phase effect of the flame retardants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng YZ, Hu J, Xue Y (2017) Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J Mater Chem A 26:13544–13556

    Article  Google Scholar 

  2. Zhou Y, Bu RW, Gong JH, Fan CG (2018) Experimental investigation on downward flame spread over rigid polyurethane and polystyrene foams. Exp Therm Fluid Sci 92:346–352 

    Google Scholar 

  3. Bao CL, Guo YQ, Song L (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 35:13290–13298

    Article  CAS  Google Scholar 

  4. Perret B, Schartel B, Stoess K (2011) Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur Polym J 5:1081–1089

    Article  CAS  Google Scholar 

  5. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers Prog. Polym Sci 8:1661–1712

    Google Scholar 

  6. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 5:345–364

    Article  CAS  Google Scholar 

  7. Hu XM, Wang DM (2013) Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants. J Appl Polym Sci 129:238–246

    Article  CAS  Google Scholar 

  8. Hergenrother PM, Thompson CM, Smith JG (2005) Flame retardant aircraft epoxy resins containing phosphorus. Polymer 14:5012–5024

    Article  CAS  Google Scholar 

  9. Zhou Y, Bu R, Gong J, Zhang X, Fan C, Wang X (2018) Assessment of a clean and efficient fire-extinguishing technique: continuous and cycling discharge water mist system. J Clean Prod 182:682–693

    Article  CAS  Google Scholar 

  10. Lai CY, Trewyn BG, Jeftinija DM (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 15:4451–4459

    Article  CAS  Google Scholar 

  11. Li ZX, Barnes JC, Bosoy A (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 7:2590–2605

    Article  CAS  Google Scholar 

  12. Zou H, Wu SS (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. J Chem Rev 9:3893–3957

    Article  CAS  Google Scholar 

  13. Qian XD, Song L, Wang BB, Hu Y, Richard KKY (2013) Synthesis of organophosphorus modified nanoparticles and their reinforcements on the fire safety and mechanical properties of polyurea. Mater Chem Phys 139:443–449

    Article  CAS  Google Scholar 

  14. Cheng WM, Hu XM, Xie J, Zhao YY (2017) An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. Fuel 210:826–835

    Article  CAS  Google Scholar 

  15. Tang Y, Lewin M, Pearce EM (2006) Effects of annealing on the migration behavior of PA6/clay nanocomposites. Macromol Rapid Commun 18:1545–1549

    Article  CAS  Google Scholar 

  16. Hamdani S, Longuet C, Perrin D (2009) Flame retardancy of silicone-based materials. Polym Degrad Stab 4:465–495

    Article  CAS  Google Scholar 

  17. Lu LG, Qian XD, Zeng ZJ (2017) Novel phosphorus-based flame retardants containing 4-tert-butylcalix[4] arene: preparation and application for the fire safety of epoxy resins. J Appl Polym Sci 31:45105

    Article  CAS  Google Scholar 

  18. Li B, He JM (2004) Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE-wood-fibre composites. Polym Degrad Stab 2:241–246

    Article  CAS  Google Scholar 

  19. Braun U, Schartel B, Fichera MA (2007) Flame retardancy mechanisms of aluminium phosphinateincombinationwithmelaminepolyphosphateandzincboratein glass-fibre reinforced polyamide 6,6. Polym Degrad Stab 8:1528–1545

    Article  CAS  Google Scholar 

  20. Hsiue GH, Liu YL, Tsiao J (2000) Phosphorus-containing epoxy resins for flame retardancy V: synergistic effect of phosphorus–silicon on flame retardancy. J Appl Polym Sci 1:1–7

    Article  Google Scholar 

  21. Kashiwagi T, Harris RH, Zhang X (2004) Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 3:881–891

    Article  CAS  Google Scholar 

  22. Li B, Xu MJ (2006) Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab 6:1380–1386

    Article  CAS  Google Scholar 

  23. Gu JW, Zhang GC, Dong SL (2007) Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Technol 18:7835–7841

    Article  CAS  Google Scholar 

  24. Wu K, Hu Y, Song L, Lu H, Wang Z (2007) Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res 48:3150–3157

    Article  CAS  Google Scholar 

  25. Qian XD, Song L, Jiang SH, Tang G, Xing WY, Wang BB, Hu Y, Yuen RKK (2013) Novel flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and unsaturated bonds: synthesis, characterization, and application in the flame retardancy of epoxy acrylates. Ind Eng Chem Res 52:7307–7315

    Article  CAS  Google Scholar 

  26. Fan C, Zhang L, Jiao S, Yang Z, Li M, Liu X (2018) Smoke spread characteristics inside a tunnel with natural ventilation under a strong environmental wind. Tunn Undergr Space Technol 82:99–110

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 21704111, 21472241), Natural Science Foundation of Hebei Province (Nos. E2016507032, E2016507027) and Hebei Science and Technology Project (17271221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zeng, Z., Qian, X. et al. Thermal degradation and combustion behavior of flame-retardant epoxy resins with novel phosphorus-based flame retardants and silicon particles. Polym. Bull. 76, 3607–3619 (2019). https://doi.org/10.1007/s00289-018-2567-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2567-8

Keywords

Navigation