Skip to main content
Log in

Effects of multi-walled carbon nanotubes (MWCNTs) on the degradation behavior of plasticized PLA nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer blend nanocomposites based on polylactic acid (PLA) were prepared via simple melt blending and investigated for its biodegradation behavior. The CNTs were surface-modified using acid treatment, and characterizations of composites were done using FTIR. FTIR spectra confirmed the surface modification of CNTs. The water uptake and weight loss behavior in hydrolytic analysis of CNT and m-CNT nanocomposites at different temperatures (25 and 45 °C) were studied. It was found that the water absorption and weight loss of nanocomposites increase by incorporation of CNTs and m-CNTs up to 2% for all samples, with and without PEG loading. In sample PLA/CNTs, 2% CNTs loading shows 1.18% water uptake at 25 °C and increases to 1.95% at 45 °C water immersion, whereas, in PLA/m-CNT nanocomposites, the water uptake reduces at 1.16% at 25 °C and 1.50% at 45 °C of analysis. In the meanwhile, the weight loss of 2% CNTs loading in PLA shows 2.88% at 25 °C and 6.28% at 45 °C, and for m-CNTs loading, the weight loss exhibits 2.09% at 25 °C and 5.29% at 45 °C. This proved the modified CNTs be able to retard the ability of nanocomposites degradation. The effect of plasticizer addition in nanocomposites was studied by loading 5 and 10% PEG. As expected, the inclusion of PEG enhanced the rate of degradation in both hydrolytic and soil burial studies. For the same amount of 2% CNTs inclusions and 10% PEG, at 45 C, the water uptake shows 5.56% as compared with 5% PEG loading, only 3.1% water uptake is shown. In soil burial test, the weight loss also increases with the addition of nanofiller. PLA/m-CNTs show lower weight loss which is only 4.50% and around 7.02% for PLA/CNTs nanocomposite. In the other hand, 10% PEG loading shows an increase in the weight loss in both CNT and m-CNT nanocomposites. Results from this study demonstrate that the inclusion of CNTs and m-CNTs into polymer matrix could increase the environmental persistence of polymers in lakes, landfills and surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79(Suppl C):1346–1352

    Article  CAS  Google Scholar 

  2. Iñiguez-Franco F, Auras R, Rubino M, Dolan K, Soto-Valdez H, Selke S (2017) Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions. Polym Degrad Stab 146(Suppl C):287–297

    Article  CAS  Google Scholar 

  3. Keshtkar M, Nofar M, Park CB, Carreau PJ (2014) Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polym (Guildf) 55(16):4077–4090

    Article  CAS  Google Scholar 

  4. Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439

    Article  CAS  Google Scholar 

  5. Lebedev SM, Gefle OS, Amitov ET, Berchuk DY, Zhuravlev DV (2017) Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization. Polym Test 58:241–248

    Article  CAS  Google Scholar 

  6. Wang L, Qiu J, Sakai E, Wei X (2016) The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Compos Part A Appl Sci Manuf 89:18–25

    Article  CAS  Google Scholar 

  7. Dorigato A, Brugnara M, Pegoretti A (2017) Synergistic effects of carbon black and carbon nanotubes on the electrical resistivity of poly(butylene-terephthalate) nanocomposites. Adv Polym Technol 1–11

  8. Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: new strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139(Suppl C):81–91

    Article  CAS  Google Scholar 

  9. Gao Y, Picot OTY, Bilotti E, Peijs T (2017) Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J 86(Suppl C):117–131

    Article  CAS  Google Scholar 

  10. Bouakaz BS, Pillin I, Habi A, Grohens Y (2015) Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Appl Clay Sci 116–117(Suppl C):69–77

    Article  CAS  Google Scholar 

  11. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93(8):1450–1459

    Article  CAS  Google Scholar 

  12. Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98(5):1006–1014

    Article  CAS  Google Scholar 

  13. Iñiguez-Franco F, Auras R, Burgess G, Holmes D, Fang X, Rubino M, Soto-Valdez H (2016) Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polym (Guildf) 99:315–323

    Article  CAS  Google Scholar 

  14. Benali S, Aouadi S, Dechief A-L, Murariu M, Dubois P (2015) Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 1(1):51–61

    Article  CAS  Google Scholar 

  15. Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M (2015) The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym Test 41(Suppl C):124–132

    Article  CAS  Google Scholar 

  16. Xu H, Yang X, Xie L, Hakkarainen M (2016) Conformational footprint in hydrolysis-induced nanofibrillation and crystallization of poly (lactic acid). Biomacromol 17(3):985–995

    Article  CAS  Google Scholar 

  17. Fortunati E, Armentano I, Iannoni A, Barbale M, Zaccheo S, Scavone M, Visai L, Kenny JM (2012) New multifunctional poly(lactide acid) composites: mechanical, antibacterial, and degradation properties. J Appl Polym Sci 124(1):87–98

    Article  CAS  Google Scholar 

  18. Feng Zuo Y, Gu J, Qiao Z, Tan H, Cao J, Zhang Y (2015) Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. Int J Biol Macromol 72(Suppl C):391–402

    Google Scholar 

  19. Lv S, Zhang Y, Gu J, Tan H (2017) Biodegradation behavior and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour. Coll Surf B Biointerf 159:800–808

    Article  CAS  Google Scholar 

  20. Li W, Xu Z, Chen L, Shan M, Tian X, Yang C, Lv H, Qian X (2014) A facile method to produce graphene oxide-g-poly (l-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem Eng J 237:291–299

    Article  CAS  Google Scholar 

  21. Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization, and biodegradation. Polym (Guildf) 48(14):4213–4225

    Article  CAS  Google Scholar 

  22. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WMZW (2014) Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites. Sci World J 2014:213180

    Article  CAS  Google Scholar 

  23. Phua YJ, Lau NS, Sudesh K, Chow WS, Mohd Ishak ZA (2012) Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97(8):1345–1354

    Article  CAS  Google Scholar 

  24. Abdul Khalil HPS, Ismail H, Ahmad MN, Ariffin A, Hassan K (2001) The effect of various anhydride modifications on mechanical properties and water absorption of oil palm empty fruit bunches reinforced polyester composites. Polym Int 50(4):395–402

    Article  CAS  Google Scholar 

  25. Dhakal HN, Zhang ZY, Richardson MOW (2007) Science and effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683

    Article  CAS  Google Scholar 

  26. Stazi F, Giampaoli M, Rossi M, Munafò P (2015) Environmental ageing on GFRP pultruded joints: comparison between different adhesives. Compos Struct 133(Suppl C):404–414

    Article  Google Scholar 

  27. Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny JM, Camino G (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96(12):2120–2129

    Article  CAS  Google Scholar 

  28. Day M, Shaw K, Cooney D, Watts J, Harrigan B (1997) Degradable polymers: the role of the degradation environment. J Environ Polym Degrad 5(3):137–151

    CAS  Google Scholar 

  29. Duan J, Ning Xie Y, Hui Yang J, Huang T, Zhang N, Wang Y, Hong Zhang J (2016) Graphene oxide induced hydrolytic degradation behavior changes of poly(l-lactide) in different mediums. Polym Test 56:220–228

    Article  CAS  Google Scholar 

  30. Chieng B, Ibrahim N, Yunus W, Hussein M (2013) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polym (Basel) 6(1):93–104

    Article  CAS  Google Scholar 

  31. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73(3):540–549

    Article  CAS  Google Scholar 

  32. Balakrishnan H, Hassan A, Imran M, Wahit MU (2011) Aging of toughened polylactic acid nanocomposites: water absorption, hygrothermal degradation and soil burial analysis. J Polym Environ 19(4):863–875

    Article  CAS  Google Scholar 

  33. Mohd Ishak ZA, Ishiaku US, Karger-Kocsis J (2000) Hygrothermal aging and fracture behavior of short-glass-fiber-reinforced rubber-toughened poly(butylene terephthalate) composites. Compos Sci Technol 60(6):803–815

    Article  CAS  Google Scholar 

  34. John MJ (2017) 7-Environmental degradation in biocomposites A2-Ray, Dipa BT-Biocomposites for high-performance applications. Woodhead Publishing, Sawston, pp 181–194

    Book  Google Scholar 

  35. Li M-X, Kim S-H, Choi S-W, Goda K, Lee W-I (2016) Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Compos Part B Eng 96:248–254

    Article  CAS  Google Scholar 

  36. Ghalia MA, Dahman Y (2017) Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int J Biol Macromol 95:494–504

    Article  CAS  PubMed  Google Scholar 

  37. Choi K, Choi M-C, Han D-H, Park T-S, Ha C-S (2013) Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur Polym J 49(8):2356–2364

    Article  CAS  Google Scholar 

  38. Sinha S, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866

    Article  Google Scholar 

  39. Wu D, Wu L, Zhou W, Zhang M, Yang T (2010) Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci 50(9):1721–1733

    Article  CAS  Google Scholar 

  40. Loh XJ, Tan KK, Li X, Li J (2006) The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(®3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials 27(9):1841–1850

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Ma P, Wang R, Wang S, Zhang Y, Zhang Y (2008) Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym Degrad Stab 93(7):1364–1369

    Article  CAS  Google Scholar 

  42. Luo S, Netravali AN (2003) A study of physical and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) during composting. Polym Degrad Stab 80(1):59–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Faculty of Chemical Engineering Technology, TATI University College (TATIUC), and University Malaysia of Pahang (UMP) for providing laboratory facilities and giving supports in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Norazlina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norazlina, H., Hadi, A.A., Qurni, A.U. et al. Effects of multi-walled carbon nanotubes (MWCNTs) on the degradation behavior of plasticized PLA nanocomposites. Polym. Bull. 76, 1453–1469 (2019). https://doi.org/10.1007/s00289-018-2454-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2454-3

Keywords

Navigation