Skip to main content
Log in

Preparation and characterization of crosslinked PVA/PAMPS blends catalytic membranes for biodiesel production

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Crosslinked PVA/PAMPS catalytic membranes as heterogeneous catalyst for biodiesel production were successfully prepared with different poly (2-acryloamido-2-1-propanesulfonic acid) (PAMPS) ratios (30, 20 and 10 wt%) and crosslinked with succinic acid (SA) (5 and 10 wt%) at two different temperatures (100 and 120 °C). FTIR confirmed the successful crosslinking by esterification of the –OH groups in PVA with SA. PVA/PAMPS blend membranes crosslinked with 10 wt% SA at 100 °C were highly effective as heterogeneous catalysts for the transesterification of soybean oil with methanol (90–94% conversion) in comparison with PVA/PAMPS membranes crosslinked with 5 wt% SA. The performance of the catalytic membranes is well correlated with the ion exchange capacity (IEC), swelling properties and crosslinking degree. The reuse of PVA/PAMPS catalytic membrane for a second reaction run indicates that activity of the membrane remains unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pinnarat T, Savage PE (2008) Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Ind Eng Chem Res 47:6801–6808

    Article  CAS  Google Scholar 

  2. Casimiro MH, Silva AG, Alvarez R, Ferreira LM, Ramos AM, Vital J (2014) PVA supported catalytic membranes obtained by γ-irradiation for biodiesel production. Radiat Phys Chem 94:171–175

    Article  CAS  Google Scholar 

  3. He B, Shao Y, Liang M, Li J, Cheng Y (2015) Biodiesel production from soybean oil by guanidinylated chitosan. Fuel 159:33–39

    Article  CAS  Google Scholar 

  4. Lam MK, Tan KT, Lee KT, Mohamed AR (2009) Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renew Sust Energ Rev 13:1456–1464

    Article  CAS  Google Scholar 

  5. Talebian-Kiakalaieh A, Amin NAS, Mazaheri H (2013) A review on novel processes of biodiesel production from waste cooking oil. Appl Energy 104:683–710

    Article  CAS  Google Scholar 

  6. Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Transesterification of soybean oil with zeolite and metal catalyst. Appl Catal A Gen 257:213–223

    Article  CAS  Google Scholar 

  7. Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid superacid catalyst in fixed bed reactor under atmospheric pressure. Catal Commun 5:721–723

    Article  CAS  Google Scholar 

  8. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777

    Article  CAS  Google Scholar 

  9. Buonomenna MG, Choi SH, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia Pac J Chem Eng 5:26–34

    Article  CAS  Google Scholar 

  10. Zhu M, He B, Shi W, Feng Y, Ding J, Li J, Zeng F (2010) Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production. Fuel 89:2299–2304

    Article  CAS  Google Scholar 

  11. Guerreiro L, Castanheiro JE, Fonseca IM, Martin-Aranda RM, Ramos AM, Vital J (2006) Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118:166–171

    Article  CAS  Google Scholar 

  12. Guerreiro L, Pereira PM, Fonseca IM, Martin-Aranda RM, Ramos AM, Dias JML, Oliveira R, Vital J (2010) PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today 156:191–197

    Article  CAS  Google Scholar 

  13. Shi W, He B, Ding J, Li J, Liang X (2010) Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Bioresour Technol 101:1501–1505

    Article  CAS  Google Scholar 

  14. Shi W, He B, Li J (2011) Esterification of acidified oil with methanol by SPES/PES catalytic membrane. Bioresour Technol 102:5389–5393

    Article  CAS  Google Scholar 

  15. Shi W, Yang M, Li H, Zhou R, Zhang H (2015) Preparation and characterization of sulfonated poly(ether sulfone) (SPES)/phosphotungstic acid (PWA) hybrid membrane for biodiesel production. Catal Lett 145(1581):1590

    Google Scholar 

  16. Shi W, He B, Cao Y, Li J, Yang F, Cui Z, Zou Z, Guo S, Qian X (2013) Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies. Bioresour Technol 129:100–107

    Article  CAS  Google Scholar 

  17. Hong-lei Z, Jin-cheng D, Zeng-dian Z (2012) Esterification of different FFAs with methanol by CERP/PES hybrid catalytic membrane for biodiesel production. J Cent South Univ 19:2895–2900

    Article  Google Scholar 

  18. Ye Y-S, Rick J, Hwang B-J (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4:913–963

    Article  CAS  Google Scholar 

  19. Karlsson LE, Wesslén B, Jannasch P (2002) Water absorption and proton conductivity of sulfonated acrylamide copolymers. Electrochim Acta 47:3269–3275

    Article  CAS  Google Scholar 

  20. Qiao J, Hamaya T, Okada T (2005) Chemically modified poly(vinyl alcohol)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a novel proton-conducting fuel cell membrane. Chem Mater 17:2413–2421

    Article  CAS  Google Scholar 

  21. Qiao J, Hamaya T, Okada T (2005) New highly conductive polymer membranes poly(vinylalcohol)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PVA-PAMPS). J Mater Chem 15:4414–4423

    Article  CAS  Google Scholar 

  22. Qiao J, Hamaya T (2007) PVA-PAMPS based semi-IPNs as new type of proton-conducting membranes for low-temperature DMFC. J New Mat Electr Sys 10:231–236

    CAS  Google Scholar 

  23. Shen Y, Xi J, Qiu X, Zhu W (2007) A new conductive membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. Electrochim Acta 52:6956–6961

    Article  CAS  Google Scholar 

  24. Zygadlo-Monikowska E, Florjanczyk Z, Wielgus-Barry E, Hildebrand E (2006) Proton conducting gel polyelectrolytes based on 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers: part II. Hydrogels. J Power Sources 159:392–398

    Article  CAS  Google Scholar 

  25. Pei H, Hong L, Lee JY (2006) Polymer electrolyte membrane based on 2-acrylamido-2-methyl-1-propanesulfonic acid fabricated by embedded polymerization. J Power Sources 160:949–956

    Article  CAS  Google Scholar 

  26. Caetano CS, Guerreiro L, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Appl Catal A Gen 359:41–46

    Article  CAS  Google Scholar 

  27. Gelbard G, Brès O, Vargas RM, Vielfaure F, Schuchardt UF (1995) 1 H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. J Am Oil Chem Soc 72:1239–1241

    Article  CAS  Google Scholar 

  28. Knothe G (2000) Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1 H nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 77:489–493

    Article  CAS  Google Scholar 

  29. Shi W, Li H, Zhou R, Zhang H, Du Q (2016) Biodiesel production from soybean oil by quaternized polysulfone alkali-catalyzed membrane. Bioresour Technol 210:43–48

    Article  CAS  Google Scholar 

  30. Dai C-A, Chang C-J, Kao A-C, Tsai W-B, Chen W-S, Liu W-M, Shih W-P, Ma C-C (2009) Polymer actuator based on PVA/PAMPS ionic membrane: optimization of ionic transport properties. Sens Actuators A Phys 155:152–162

    Article  CAS  Google Scholar 

  31. Gohil JM, Bhattacharya A, Ray P (2006) Studies on the cross-linking of poly(vinyl alcohol). J Polym Res 13:161–169

    Article  CAS  Google Scholar 

  32. Aggour YA (1994) Synthesis and characterization of copolymers of 2-(dimethylamino) ethyl acrylate with 2-acrylamido-2-methylpropanesulphonic acid. Polym Degrad Stab 45:273–276

    Article  CAS  Google Scholar 

  33. Rogozinsky M, Kramer M (1972) Determination of the gel content of vinyl chloride polymers and copolymers. J Polym Sci Polym Chem 10:3111–3112

    Article  Google Scholar 

Download references

Acknowledgements

This project was founded by SENER CEMIE-BIO 250014. M. O. González-Díaz acknowledges the Cátedras CONACyT Project No. 3139. Z. Corzo-Gonzalez gratefully acknowledges a Grant No. 376912 from CONACyT. NMR measurements were conducted at LANNBIO Cinvestav-Mérida and we want to thank Dr. Patricia Quintana for that.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Aguilar-Vega or Maria Ortencia González-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corzo-González, Z., Loria-Bastarrachea, M.I., Hernández-Nuñez, E. et al. Preparation and characterization of crosslinked PVA/PAMPS blends catalytic membranes for biodiesel production. Polym. Bull. 74, 2741–2754 (2017). https://doi.org/10.1007/s00289-016-1864-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1864-3

Keywords

Navigation