Skip to main content

Advertisement

Log in

Textile cotton dust waste: partial diethylaminoethylation and its application to the sorption/removal of the model residual textile dye Reactive Red 239

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cellulose is the most abundant polysaccharide in nature and it encompasses a lot of industrial applications; it is from totally renewable resources and it reduces the greenhouse effect. The cotton yarn has an unavoidable loss of 8 % during any textile factory processes. Due to its intrinsic cellulosic nature, this cotton dust waste may be a convenient feedstock for chemical derivatization with diethylaminoethyl groups, thus providing a DEAE+-CDW anionic exchange matrix able to adsorb a residual dye, such as Reactive Red 239 (RR239), from textile wastewaters. A factorial design (with such parameters as alkali catalyst and derivatization reagent) and other experiments were performed to investigate the influence of the initial model dye concentration, contact time and presence of common textile salts. A selected DEAE+-CDW displayed RR239 dye sorption of 60.00 (column) and 93.41 mg g−1 (batch). A good fit was found for the Langmuir isotherm (R 2 = 0.9878) drawn from the sorption data. The use of more DEAE+ reagent in the synthesis step resulted in better DEAE+-CDW matrices, with the same being valid for the alkali concentration but with less intensity. The addition of 50 or 100 mmol L−1 NaCl increased RR239 retention by 8.15 %, and the enzymatic cellulolytic degradability of fully dyed DEAE+-CDW, compared to dye-free DEAE+-CDW, was reduced from 42.57 to 28.15 %. The data support the assumption that the DEAE+-CDW matrix is effective in the removal of the recalcitrant residual dye and or its colored degradation products still present in partially precleared textile waste sample and thus this represents an important alternative in the treatment of colored textile effluents. Shortly, a factory problem was converted in a solution for another greater environmental problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nada A-AMA, Hassan ML (2006) Ion exchange properties of carboxylated bagasse. J Appl Polym Sci 102(2):1399–1404. doi:10.1002/app.24255

    Article  CAS  Google Scholar 

  2. Batzias FA, Sidiras DK (2007) Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems. J Hazard Mater 149(1):8–17. doi:10.1016/j.jhazmat.2007.03.043

    Article  CAS  Google Scholar 

  3. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energ Combust 42:35–53. doi:10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  4. Tiboni M, Grzybowski A, Baldo G, Dias E Jr, Tanner R, Kornfield J, Fontana J (2014) Thermopressurized diluted phosphoric acid pretreatment of ligno(hemi)cellulose to make free sugars and nutraceutical oligosaccharides. J Ind Microbiol Biotechnol 41(6):957–964. doi:10.1007/s10295-014-1426-3

    Article  CAS  Google Scholar 

  5. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847. doi:10.1016/j.ijbiomac.2014.09.044

    Article  CAS  Google Scholar 

  6. Saad SA, Isa KM, Bahari R (2010) Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination 264(1–2):123–128. doi:10.1016/j.desal.2010.07.015

    Article  CAS  Google Scholar 

  7. Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manage 113:170–183. doi:10.1016/j.jenvman.2012.08.028

    Article  CAS  Google Scholar 

  8. Rangabhashiyam S, Anu N, Selvaraju N (2013) Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. J Environ Chem Eng 1(4):629–641. doi:10.1016/j.jece.2013.07.014

    Article  CAS  Google Scholar 

  9. Jiang G-B, Lin Z-T, Huang X-Y, Zheng Y-Q, Ren C-C, Huang C-K, Huang Z-J (2012) Potential biosorbent based on sugarcane bagasse modified with tetraethylenepentamine for removal of eosin Y. Int J Biol Macromol 50(3):707–712. doi:10.1016/j.ijbiomac.2011.12.030

    Article  CAS  Google Scholar 

  10. Orlando US, Baes AU, Nishijima W, Okada M (2002) A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresour Technol 83(3):195–198. doi:10.1016/S0960-8524(01)00220-6

    Article  CAS  Google Scholar 

  11. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207. doi:10.1023/a:1018431705579

    Article  Google Scholar 

  12. Zanella G, Scharf M, Vieira GA, Peralta-Zamora P (2010) Tratamento de banhos de tingimento têxtil por processos foto-fenton e avaliação da potencialidade de reuso. Quim Nova 33(5):1039–1043

    Article  CAS  Google Scholar 

  13. Jamil TS, Ghaly MY, Fathy NA, Abd el-halim TA, Österlund L (2012) Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Sep Purif Technol 98(0):270–279. doi:10.1016/j.seppur.2012.06.018

    Article  CAS  Google Scholar 

  14. Khataee AR, Dehghan G (2011) Optimization of biological treatment of a dye solution by macroalgae Cladophora sp. using response surface methodology. J Taiwan Inst Chem Eng 42(1):26–33. doi:10.1016/j.jtice.2010.03.007

    Article  CAS  Google Scholar 

  15. Auta M, Hameed BH (2013) Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Coll Surf B 105:199–206. doi:10.1016/j.colsurfb.2012.12.021

    Article  CAS  Google Scholar 

  16. Clarke Garegg MA, Roberts EJ (1996) Removal of color, polysaccharides, phenolics and turbidity from sugar-containing solutions and derivated fibrous residues therefore. USA Patent US5504196 A, April, 2

  17. Wong A (1989) Absorbent structures. USA Patent US4818598 A, April, 28

  18. Conklin DB (1952) Testing for quaternary ammonium compounds. USA Patent US2599697 A, June, 10

  19. Miller L, Houghton JA (1945) The micro-Kjeldahl determination of the nitrogen content of amino acids and proteins. J Biol Chem 159:373–383

    CAS  Google Scholar 

  20. Ansari R, Seyghali B, Mohammad-khah A, Zanjanchi MA (2012) Highly efficient adsorption of anionic dyes from aqueous solutions using sawdust modified by cationic surfactant of cetyltrimethylammonium bromide. J Surfact Deterg 15(5):557–565. doi:10.1007/s11743-012-1334-3

    Article  CAS  Google Scholar 

  21. Baldo G, Döhler L, Grzybowski A, Tiboni M, Scremin L, Koop H, Santana M, Lião L, Fontana J (2014) Partially carboxymethylated cotton dust waste for sorption of textile wastewater coloured with the cationic dye Basic Blue 41 as a model: synthesis, regeneration and biodegradability. Cellulose 21(4):3041–3053. doi:10.1007/s10570-014-0304-5

    Article  CAS  Google Scholar 

  22. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  23. Tiboni M, Grzybowski A, Passos M, Barison A, Lião L, Campos F, Pontarolo R, Fontana J (2012) The use of dyed bacterial cellulose to monitor cellulase complex activity. Cellulose 19(6):1867–1877. doi:10.1007/s10570-012-9787-0

    Article  CAS  Google Scholar 

  24. Alver E, Metin AÜ (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67. doi:10.1016/j.cej.2012.06.038

    Article  Google Scholar 

  25. Benkli YE, Can MF, Turan M, Çelik MS (2005) Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Res 39(2–3):487–493. doi:10.1016/j.watres.2004.10.008

    Article  CAS  Google Scholar 

  26. Nwabanne JT, Igbokwe PK (2008) Kinetics and equilibrium modeling of nickel adsorption by cassava peel. J Eng Appl Sci 3(11):829–834

    CAS  Google Scholar 

  27. Ding C, Li Z, Yan J, Jin J (2008) Adsorption behavior of p-chlorophenol on the reed wetland soils. J Environ Sci Technol 1(4):169–174

    Article  CAS  Google Scholar 

  28. Sadaf S, Bhatti HN (2014) Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. J Taiwan Inst Chem Eng 45(2):541–553. doi:10.1016/j.jtice.2013.05.004

    Article  CAS  Google Scholar 

  29. Alibaba (2014) Henan Xinxiang Zhongyuan Chemical Co., Ltd.: Monochloroacetic acid price. http://hnzyyjhg.en.alibaba.com/product/556257370-213473867/monochloroacetic_acid_97_5_price.html. Accessed 10 Jan 2014

  30. Alibaba (2014) Shanghai Soyoung biotech company: 2-diethylaminoethylchloride hydrochloride price. http://www.alibaba.com/product-detail/Supply-2-Diethylaminoethylchloride-hydrochloride-869-24_493339560.html. Accessed Nov 26 2014

Download references

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and the Araucaria Foundation from SETI-PR as well as the textile companies Döhler S/A and State One for the provision of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Fontana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana, J.D., Baldo, G.R., Grzybowski, A. et al. Textile cotton dust waste: partial diethylaminoethylation and its application to the sorption/removal of the model residual textile dye Reactive Red 239. Polym. Bull. 73, 3401–3420 (2016). https://doi.org/10.1007/s00289-016-1663-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1663-x

Keywords

Navigation