Skip to main content

Advertisement

Log in

One-pot synthesis of hyperbranched polyols and their effects as crosslinkers on HTPB-based polyurethane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hyperbranched polyethers and hyperbranched poly(amino ester)s were synthesized through one-pot method, and characterized by fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance and thermogravimetry analysis (TGA). The as-obtained hyperbranched polyols with different molecular structure and sizes were used to crosslink hydroxyl-terminated polybutadiene-based polyurethane (PU). The PU was characterized by tensile test, dynamic mechanical analysis, TGA, and swelling properties. It was found that the crosslinker structure and size have great effects on the properties of the PU. Hyperbranched polyether cross-linked PU showed the best mechanical properties, which reached mechanical strength of 1.45 MPa with elongation at break of 617 % for the third generation with hard segment content of 26.8 % at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tsai L-R, Chen Y (2008) Hyperbranched poly(fluorenevinylene)s obtained from self-polymerization of 2,4,7-tris(bromomethyl)-9,9-dihexylfluorene. Macromolecules 41:5098–5106

    Article  CAS  Google Scholar 

  2. Irfan M, Seiler M (2010) Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind Eng Chem Res 49:1169–1196

    Article  CAS  Google Scholar 

  3. Seiler M (2006) Hyperbranched polymers: phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib 241:155–174

    Article  CAS  Google Scholar 

  4. Wang G, Wang X (2002) A novel hyperbranched polyester functionalized with azo chromophore: synthesis and photoresponsive properties. Polym Bull 49:1–8

    Article  CAS  Google Scholar 

  5. Johansson K, Bergman T, Johansson M (2008) Hyperbranched aliphatic polyesters and reactive diluents in thermally cured coil coatings. ACS Appl Mater Interfaces 1:211–217

    Article  Google Scholar 

  6. Plummer CJG, Luciani A, Nguyen T-Q, Garamszegi L, Rodlert M, Månson J-AE (2002) Rheological characteristics of hyperbranched polyesters. Polym Bull 49:77–84

    Article  CAS  Google Scholar 

  7. Wang W, Zheng Y, Roberts E, Duxbury CJ, Ding L, Irvine DJ, Howdle SM (2007) Controlling chain growth: a new strategy to hyperbranched materials. Macromolecules 40:7184–7194

    Article  CAS  Google Scholar 

  8. Huo J, Wang L, Yu H, Deng L, Ding J, Tan Q, Liu Q, Xiao A, Ren G (2008) Hyperbranched ferrocenyl polymer film with high charge transport efficiency. J Phys Chem B 112:11490–11497

    Article  CAS  Google Scholar 

  9. James D (2005) Hyperbranched polymers for hardcoat with superior performances. RadTech Asia

  10. Bruchmann B, Königer R, Renz H (2002) Tailor-made crosslinkers for high performance PUR coatings—hyperbranched polyisocyanates. Macromol Symp 187:271–280

    Article  CAS  Google Scholar 

  11. Qian Y, Lindsay CI, Macosko C, Stein A (2011) Synthesis and properties of vermiculite-reinforced polyurethane nanocomposites. ACS Appl Mater Interfaces 3:3709–3717

    Article  CAS  Google Scholar 

  12. Toiserkani H (2013) Organosoluble and thermally stable modified poly(ether-imide-urethane)s bearing benzoxazole or benzothiazole pendent groups: synthesis and characterization. Polym Bull 70:2727–2740

    Article  CAS  Google Scholar 

  13. Demétrio da Silva V, dos Santos L, Subda S, Ligabue R, Seferin M, Carone CP, Einloft S (2013) Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 70:1819–1833

    Article  Google Scholar 

  14. Mallakpour S, Sabzalian M (2013) In vitro degradation assessment of optically active poly(urethane-imide)s based on α-amino acids. Polym Bull 70:3425–3441

    Article  CAS  Google Scholar 

  15. Song H-J, Zhang Z-Z, Men X-H (2008) Tribological behavior of polyurethane-based composite coating reinforced with TiO2 nanotubes. Eur Polym J 44:1012–1022

    Article  CAS  Google Scholar 

  16. Makal U, Wood L, Ohman DE, Wynne KJ (2006) Polyurethane biocidal polymeric surface modifiers. Biomaterials 27:1316–1326

    Article  CAS  Google Scholar 

  17. Thomas V, Kumari TV, Jayabalan M (2001) In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications. Biomacromolecules 2:588–596

    Article  CAS  Google Scholar 

  18. Bernal MM, Martin-Gallego M, Romasanta LJ, Mortamet A-C, López-Manchado MA, Ryan AJ, Verdejo R (2012) Effect of hard segment content and carbon-based nanostructures on the kinetics of flexible polyurethane nanocomposite foams. Polymer 53:4025–4032

    Article  CAS  Google Scholar 

  19. Wang Y, Sotzing GA, Weiss RA (2006) Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions. Polymer 47:2728–2740

    Article  CAS  Google Scholar 

  20. Castagna AM, Pangon A, Choi T, Dillon GP, Runt J (2012) The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromolecules 45:8438–8444

    Article  CAS  Google Scholar 

  21. Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Polyurethane adhesive nanocomposites as gas permeation barrier. Macromolecules 36:9851–9858

    Article  CAS  Google Scholar 

  22. Ghosh UK, Pradhan NC, Adhikari B (2006) Pervaporative recovery of N-methyl-2-pyrrolidone from dilute aqueous solution by using polyurethaneurea membranes. J Membr Sci 285:249–257

    Article  CAS  Google Scholar 

  23. Dubey R, Chawla M, Siril PF, Singh G (2013) Bi-metallic nanocomposites of Mn with very high catalytic activity for burning rate enhancement of composite solid propellants. Thermochim Acta 572:30–38

    Article  CAS  Google Scholar 

  24. Huang S-L, Chang P-H, Tsai M-H, Chang H-C (2007) Properties and pervaporation performances of crosslinked HTPB-based polyurethane membranes. Sep Purif Technol 56:63–70

    Article  CAS  Google Scholar 

  25. Chen D, Yi S, Wu W, Zhong Y, Liao J, Huang C, Shi W (2010) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents. Polymer 51:3867–3878

    Article  CAS  Google Scholar 

  26. Chen D, Nie J, Yi S, Wu W, Zhong Y, Liao J, Huang C (2010) Thermal behaviour and mechanical properties of novel RTV silicone rubbers using divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker. Polym Degrad Stab 95:618–626

    Article  CAS  Google Scholar 

  27. Odian G (2004) Principles of polymerization. Wiley, USA

    Book  Google Scholar 

  28. Kohga M (2011) Viscoelastic behavior of hydroxyl terminated polybutadiene containing glycerin. J Appl Polym Sci 122:706–713

    Article  CAS  Google Scholar 

  29. Kohga M (2009) From cross-linking to plasticization—characterization of glycerin/HTPB blends. Propellants Explos Pyrotech 34:436–443

    Article  CAS  Google Scholar 

  30. Minko E, Sysel P, Spergl M, Slapakova P (2012) Hyperbranched polyimides prepared from 4,4′,4″-triaminotriphenylmethane and mixed matrix materials based on them. doi:10.5772/53552

  31. Nunez CM, Chiou B-S, Andrady AL, Khan SA (2000) Solution rheology of hyperbranched polyesters and their blends with linear polymers. Macromolecules 33:1720–1726

    Article  CAS  Google Scholar 

  32. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  Google Scholar 

  33. Yaping Z, Jiaoxia Z, Xiaodong Y, Lan L (2013) The synthesis of hyperbranched poly(amine-ester) and study on the properties of its UV-curing film. J Adhes Sci Technol 27:2666–2675

    Article  Google Scholar 

  34. Gercel BO, Üner DO, Pekel F, Özkar S (2001) Improved adhesive properties and bonding performance of HTPB-based polyurethane elastomer by using aziridine-type bond promoter. J Appl Polym Sci 80:806–814

    Article  CAS  Google Scholar 

  35. Desai S, Thakore IM, Sarawade BD, Devi S (2000) Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. Eur Polym J 36:711–725

    Article  CAS  Google Scholar 

  36. Velankar S, Cooper SL (1998) Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 31:9181–9192

    Article  CAS  Google Scholar 

  37. Chen TK, Shieh TS, Chui JY (1998) Studies on the first DSC endotherm of polyurethane hard segment based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules 31:1312–1320

    Article  CAS  Google Scholar 

  38. Waletzko RS, Korley LTJ, Pate BD, Thomas EL, Hammond PT (2009) Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO–PPO–PEO soft segments and HDI hard segments. Macromolecules 42:2041–2053

    Article  CAS  Google Scholar 

  39. Henry I, Pascault J-P, Taha M, Vigier G, Flat J–J (2002) Structure and properties of polyurethane acrylate prepolymers based on hydroxy-terminated polybutadiene. J Appl Polym Sci 83:225–233

    Article  CAS  Google Scholar 

  40. Huang S-L, Lai J-Y (1997) Tensile property of modified hydroxyl-terminated polybutadiene-based polyurethanes. J Appl Polym Sci 64:1235–1245

    Article  CAS  Google Scholar 

  41. Amrollahi M, Sadeghi GMM, Kashcooli Y (2011) Investigation of novel polyurethane elastomeric networks based on polybutadiene-ol/polypropyleneoxide mixture and their structure–properties relationship. Mater Des 32:3933–3941

    Article  CAS  Google Scholar 

  42. Huang S-L, Lai J-Y (1997) Structure-tensile properties of polyurethanes. Eur Polym J 33:1563–1567

    Article  CAS  Google Scholar 

  43. Tien YI, Wei KH (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42:3213–3221

    Article  CAS  Google Scholar 

  44. Hsu S-H, Tang C-M, Tseng H-J (2007) Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 9:241–248

    Article  Google Scholar 

  45. Tsai M-H, Huang S-L, Chang P-H, Chen C-J (2007) Properties and pervaporation separation of hydroxyl-terminated polybutadiene-based polyurethane/poly(methyl metharcylate) interpenetrating networks membranes. J Appl Polym Sci 106:4277–4286

    Article  CAS  Google Scholar 

  46. Chen C-J, Tseng IH, Lu H-T, Tseng W-Y, Tsai M-H, Huang S-L (2011) Thermal and tensile properties of HTPB-based PU with PVC blends. Mater Sci Eng A 528:4917–4923

    Article  CAS  Google Scholar 

  47. Zawadzki SF, Akcelrud L (1997) HTPB-based polyurethanes: a correlation study between morphology and mechanical behaviour. Polym Int 42:422–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Fundamental Research Funds for the Central Universities, the Youth Chenguang Project of Wuhan (201,271,031,377), Combination Project of Guangdong Province and the Ministry of Education (2011B090400397), and the Fundamental Research Funds for the Central Universities—Luojia Young Scholars Program (217,273,483). We thank Mrs Ling Hu and Doc. Pengfei Fang for the help of FT-IR and DMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingjie, H., Wei, F., Le, G. et al. One-pot synthesis of hyperbranched polyols and their effects as crosslinkers on HTPB-based polyurethane. Polym. Bull. 71, 2671–2693 (2014). https://doi.org/10.1007/s00289-014-1215-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1215-1

Keywords

Navigation