Skip to main content
Log in

Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(l-lactic acid) (PLLA) fiber mats containing two types of crude Garcinia mangostana Linn. (GM) extract [i.e., dichloromethane extract (dGM) and acetone extract (aGM)] were successfully prepared by electrospinning process. Both the neat and the GM-loaded PLLA fibers were smooth, with the average diameters ranging between 0.77 and 1.14 μm. The release characteristics of GM from the GM-loaded PLLA fiber mats were carried out by total immersion method in acetate buffer or simulated body fluid that contained 0.5 % v/v Tween 80 and 3 % v/v methanol (hereafter, A/T/M or S/T/M medium) at either 32 or 37 °C, respectively. The maximum cumulative amounts of GM released from the GM-loaded PLLA fiber mats in the S/T/M medium were greater than those in the A/T/M medium. Moreover, the cumulative amounts of GM released from the aGM-loaded PLLA fiber mats were greater than those from the dGM-loaded PLLA fiber mats in both types of medium. The antibacterial activity of the dGM-loaded PLLA fiber mats was greatest against Staphylococcus aureus DMST 20654, while that of the aGM-loaded PLLA fiber mats was greatest against S. aureus ATCC 25923 and S. epidermidis. Lastly, only the dGM-loaded PLLA fiber mats at extraction ratio of 10 mg mL−1 were toxic to the human dermal fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688. doi:10.1126/science.1063187

    Article  CAS  Google Scholar 

  2. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178. doi:10.1038/nbt874

    Article  CAS  Google Scholar 

  3. Hargerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138. doi:10.1073/pnas.072699999

    Article  Google Scholar 

  4. Zong X, Ran S, Kim K-S, Fang D, Hsiao BS, Chu B (2003) Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membran. Biomacromolecules 4:416–423. doi:10.1021/bm025717o

    Article  CAS  Google Scholar 

  5. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082. doi:10.1016/S0142-9612(02)00635-X

    Article  CAS  Google Scholar 

  6. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31. doi:10.1016/0376-7388(96)00088-9

    Article  Google Scholar 

  7. Fu X, Matsuyama H, Teramoto M, Nagai H (2006) Preparation of polymer blend hollow fiber membrane via thermally induced phase separation. Sep Purif Technol 52:363–371. doi:10.1016/j.seppur.2006.05.018

    Article  CAS  Google Scholar 

  8. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223. doi:10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  9. Qi Z, Yu H, Chen Y, Zhu M (2009) Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Mater Lett 63:415–418. doi:10.1016/j.matlet.2008.10.059

    Article  CAS  Google Scholar 

  10. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869. doi:10.1016/j.carbpol.2009.03.009

    Article  CAS  Google Scholar 

  11. Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl 33:1228–1235. doi:10.1016/j.msec.2012.12.015

    Article  CAS  Google Scholar 

  12. Zhou J, Cao C, Ma X, Lin J (2010) Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol 47:514–519. doi:10.1016/j.ijbiomac.2010.07.010

    Article  CAS  Google Scholar 

  13. Kenawy E-R, Abdel-Hay FI, El-Newehy MH, Wnek GE (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113:296–302. doi:10.1016/j.matchemphys.2008.07.081

    Article  CAS  Google Scholar 

  14. Nguyen TTT, Ghosh C, Hwang S-G, Chanunpanich N, Park JS (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439:296–306. doi:10.1016/j.ijpharm.2012.09.019

    Article  CAS  Google Scholar 

  15. Moreno I, González-González V, Romero-García J (2011) Control release of lactate dehydrogenase encapsulated in poly(vinly alcohol) nanofibers via electrospinning. Eur Polym J 47:1264–1272. doi:10.1016/j.eurpolymj.2011.03.005

    Article  CAS  Google Scholar 

  16. Suwantong O, Opanasopit R, Ruktanonchai U, Supaphol P (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546–7557. doi:10.1016/j.polymer.2007.11.019

    Article  CAS  Google Scholar 

  17. Montazer M, Malekzadeh SB (2012) Electrospun antibacterial nylon nanofibers through in situ synthesis of nanosilver: preparation and characteristics. J Polym Res 19:9980. doi:10.1007/s10965-012-9980-8

    Article  Google Scholar 

  18. Suwantong O, Pankongadisak P, Deachathai S, Supaphol P (2012) Electrospun poly(l-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. J Polym Res 19:9896. doi:10.1007/s10965-012-9896-3

    Article  Google Scholar 

  19. Gu S-Y, Wang Z-M, Ren J, Zhang C-Y (2009) Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing. Mat Sci Eng C 29:1822–1828. doi:10.1016/j.msec.2009.02.010

    Article  CAS  Google Scholar 

  20. Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92. doi:10.1016/j.ijbiomac.2012.11.013

    Article  CAS  Google Scholar 

  21. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160. doi:10.1016/0304-3886(95)00041-8

    Article  CAS  Google Scholar 

  22. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Beck Tan NC (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163–8170. doi:10.1016/S0032-3861(01)00336-6

    Article  CAS  Google Scholar 

  23. Long L-X, Yuan X-B, Chang J, Zhang Z-H, Gu M-Q, Song T-T, Xing Y, Yuan X-Y, Jiang S-C, Sheng J (2012) Self-assembly of polylactic acid and cholesterol-modified dextran into hollow nanocapsules. Carbohydr Polym 87:2630–2637. doi:10.1016/j.carbpol.2011.11.032

    Article  CAS  Google Scholar 

  24. Li F, Li X, Li B (2011) Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin. J Magn Magn Mater 323:2770–2775. doi:10.1016/j.jmmm.2011.05.045

    Article  CAS  Google Scholar 

  25. Giurea A, Klein TJ, Chen AC, Goomer RS, Coutts RD, Akeson WH, Amiel D, Sah RL (2003) Adhesion of perichondiral cells to a polylactic acid scaffold. J Orthop Res 21:584–589. doi:10.1016/S0736-0266(02)00263-2

    Article  CAS  Google Scholar 

  26. Hsu S-H, Chan S-H, Chiang C-M, Chen CC-C, Jiang C-F (2011) Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials 32:3764–3775. doi:10.1016/j.biomaterials.2011.01.065

    Article  CAS  Google Scholar 

  27. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231. doi:10.1016/S0168-3659(03)00372-9

    Article  CAS  Google Scholar 

  28. Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364:87–93. doi:0.1016/j.ijpharm.2008.07.033

    Article  CAS  Google Scholar 

  29. Chuysinuan P, Chimnoi N, Techasakul S, Supaphol P (2009) Gallic acid-loaded electrospun poly(l-lactic acid) fiber mats and their release characteristic. Macromol Chem Phys 210:814–822. doi:10.1002/macp.200800614

    Article  CAS  Google Scholar 

  30. Suwantong O, Pankongadisak P, Deachathai S, Supaphol P (2013) The potential of electrospun poly(l-lactic acid) fiber mats containing a crude Garcinia Dulcis extract for use as wound dresssings. Chiang Mai J Sci 40:1–17

    Google Scholar 

  31. Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54:2077–2082. doi:10.1021/jf052649z

    Article  CAS  Google Scholar 

  32. Mahabusarakam W, Wiriyachitra P, Taylor WC (1987) Chemical constituents of Garcinia mangostana. J Nat Prod 50:474–478. doi:10.1021/np50051a021

    Article  CAS  Google Scholar 

  33. Jinsart W, Ternai B, Buddhasukh D, Polya GM (1992) Inhibition of wheat embryo calcium-dependent protein kinase and other kinases by mangostin and gamma-mangostin. Phytochemistry 31:3711–3713. doi:10.1016/S0031-9422(00)97514-9

    Article  CAS  Google Scholar 

  34. Chairungsrilerd N, Furukawa K, Ohta T, Nozoe S, Ohizumi Y (1996) Pharmacological properties of alpha-mangostin, a novel histamine H1 receptor antagonist. Eur J Pharmacol 4:351–356. doi:10.1016/S0014-2999(96)00562-6

    Article  Google Scholar 

  35. Chairungsrilerd N, Furukawa K-I, Tadano T, Kisara K, Ohizumi Y (1998) Effect of γ-mangostin through the inhibition of 5-hydroxytryptamine2A receptors in 5-fluoro-α-methyltryptamine-induced head-twitch response of mice. Br J Pharmacol 123:855–862. doi:10.1038/sj.bjp.0701695

    Article  CAS  Google Scholar 

  36. Chen L-G, Yang L-L, Wang C-C (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46:688–693. doi:10.1016/j.fct.2007.09.096

    Article  CAS  Google Scholar 

  37. Nakatani K, Atsumi M, Arakawa T, Oosawa K, Shimura S, Nakahata N, Ohizumi Y (2002) Inhibition of histamine release and prostaglandin E2 synthesis by mangosteen, a Thai medicine plant. Biol Pharm Bull 25:1137–1141. doi:10.1248/bpb.25.1137

    Article  CAS  Google Scholar 

  38. Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, Suksamrarn A (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 51:857–859. doi:10.1248/cpb.51.857

    Article  CAS  Google Scholar 

  39. Nakatani K, Nakahata N, Arakawa T, Yasuda H, Ohizumi Y (2002) Inhibition of cyclooxygenase and prostaglandin E2 synthesis by gamma-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem Pharmacol 63:73–79. doi:10.1016/S0006-2952(01)00810-3

    Article  CAS  Google Scholar 

  40. Mahabusarakam W, Proudfoot J, Taylor W, Croft K (2000) Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radical Res 33:643–659. doi:10.1080/10715760000301161

    Article  CAS  Google Scholar 

  41. Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi K (1996) Antibacterial activity of xanthones from Guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J Pharm Pharmacol 48:861–865. doi:10.1111/j.2042-7158.1996.tb03988.x

    Article  CAS  Google Scholar 

  42. Sakagami Y, Iinuma M, Piyasena KG, Dharmaratne HR (2005) Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 12:203–208. doi:10.1016/j.phymed.2003.09.012

    Article  CAS  Google Scholar 

  43. Yu L, Zhao M, Yang B, Zhao Q, Jiang Y (2007) Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem 104:176–181. doi:10.1016/j.foodchem.2006.11.018

    Article  CAS  Google Scholar 

  44. Moongkarndi P, Kosem N, Kaslungka S, Luanratana O, Pongpan N, Neungton N (2004) Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol 90:161–166. doi:10.1016/j.jep.2003.09.048

    Article  Google Scholar 

  45. Weecharangsan W, Opanasopit P, Sukma M, Ngawhirunpat T, Sotanaphun U, Siripong P (2006) Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.). Med Princ Pract 15:281–287. doi:10.1159/000092991

    Article  Google Scholar 

  46. Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2003) Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 66:1124–1127. doi:10.1021/np020546u

    Article  CAS  Google Scholar 

  47. Yu L, Zhao M, Yang B, Bai W (2009) Immunomodulatory and anticancer activities of phenolic from Garcinia mangostana fruit pericarp. Food Chem 116:969–973. doi:10.1016/j.foodchem.2009.03.064

    Article  CAS  Google Scholar 

  48. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  49. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36. doi:10.1016/0168-3659(87)90034-4

    Article  CAS  Google Scholar 

  50. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35. doi:10.1016/0169-409X(93)90025-Y

    Article  CAS  Google Scholar 

  51. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360. doi:10.1016/S0168-3659(03)00342-0

    Article  CAS  Google Scholar 

  52. Zarena AS, Sankar KU (2009) A study of antioxidant properties from Garcinia mangostana L. pericarp extract. Acta Sci Pol Technol Aliment 8:23–34

    CAS  Google Scholar 

  53. Marinova EM, Yanishlieva NV (1997) Antioxidative activity of extracts from selected species of the family Lamiaceae in sunflower oil. Food Chem 58:245–248. doi:10.1016/S0308-8146(96)00223-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (Grant Number: MRG5380120). We are grateful to Mae Fah Luang University for partial financial support and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawan Suwantong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suwantong, O., Pankongadisak, P., Deachathai, S. et al. Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings. Polym. Bull. 71, 925–949 (2014). https://doi.org/10.1007/s00289-014-1102-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1102-9

Keywords

Navigation