Skip to main content
Log in

Preparation and characterisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of dicumyl peroxide/vinyltriethoxysilane treatment and nanoclay content were investigated for low-density polyethylene (LDPE)/clay nanocomposites. LDPE was treated with 0.1 phr of DCP with, respectively, 1 phr and 3 phr VTES (System A), and with 0.2 phr of DCP with the same amounts of VTES (System B), and then mixed with different contents (1, 3, and 5 wt%) of modified clay (Cloisite 15A). The morphology and extent of crosslinking, as well as the thermal, mechanical, and thermomechanical properties were studied. X-ray diffraction results of all the VTES-treated LDPE/clay nanocomposites showed an increase in interlayer spacing, which indicates that the polymer chains were intercalated between the clay layers. Transmission electron microscopy micrographs of System B showed some evidence of exfoliated clay layers, indicating that the system exhibited a mixed morphology. The clay-containing samples had better thermal stability than LDPE, but the thermal stability did not differ much for the two systems. VTES observably decreased the melting enthalpy of LDPE, while the presence of clay had little influence on this value. This is somewhat contrary to the gel content results that showed a decrease in the extent of crosslinking in the presence of and with increasing clay content. VTES/DCP treatment and the presence of clay observably changed the dynamic mechanical and tensile behaviour of the LDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  2. Grigoriadi K, Giannakas A, Ladavos A, Barkoula NM (2013) Thermomechanical behaviour of polymer/layered silicate clay nanocomposites based on unmodified low density polyethylene. Polym Eng Sci 53:301–308. doi:10.1002/pen.23264

    Article  CAS  Google Scholar 

  3. Fermeglia M, Ferrone M, Pricl S (2003) Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy. Fluid Phase Equilib 212:315–329. doi:10.1016/S0378-3812(03)00273-5

    Article  CAS  Google Scholar 

  4. Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442:74–77. doi:10.1016/j.tca.2006.01.017

    Article  CAS  Google Scholar 

  5. Ray S, Quek SY, Easteal A, Chen XD (2006) The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng 2:1–11. doi:10.2202/1556-3758.1149

    Article  Google Scholar 

  6. Arunvisut S, Phummanee S, Somwangthanaroj A (2007) Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites. J Appl Polym Sci 106:2210–2217. doi:10.1002/app.26839

    Article  CAS  Google Scholar 

  7. Yeh JM, Chang KC (2008) Polymer/layered silicate nanocomposite anticorrosive coatings. J Ind Eng Chem 14:275–291. doi:10.1016/j.jiec.2008.01.011

    Article  CAS  Google Scholar 

  8. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198. doi:10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  9. Kim JK, Park HS, Rhee DK, Ham SJ, Lee KJ, Yoo PJ, Park JH (2012) Ultrathin nanoclay film with tunable thickness as barrier layers in organic light emitting devices. J Mater Chem 22:7718–7723. doi:10.1039/c2jm00047d

    Article  CAS  Google Scholar 

  10. Tamboli SM, Mhaske ST, Kale DD (2004) Crosslinked polyethylene. Indian J Chem Technol 11:853–864

    CAS  Google Scholar 

  11. Barzin J, Azizi H, Morshedian J (2007) Preparation of silane-grafted and moisture crosslinked low density polyethylene. Part II: electrical, thermal and mechanical properties. Polymer-Plast Technol Eng 46:305–310. doi:10.1080/03602550601155815

    Article  CAS  Google Scholar 

  12. Anbarasan R, Babot O, Maillard B (2004) Crosslinking of high-density polyethylene in the presence of organic peroxides. J Appl Polym Sci 93:75–81. doi:10.1002/app.20390

    Article  CAS  Google Scholar 

  13. Shah GB, Fuzail M, Anwar J (2004) Aspects of the crosslinking of polyethylene with vinyl silane. J Appl Polym Sci 92:3796–3803. doi:10.1002/app.20381

    Article  CAS  Google Scholar 

  14. Shukri TM, Mosnacek J, Basfar AA, Bahattab MA, Noireaux P, Courdreuse A (2008) Flammability of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications. J Appl Polym Sci 109:167–173. doi:10.1002/app.28080

    Article  CAS  Google Scholar 

  15. Fabris FW, Stedile FC, Mauler RS, Nachtigall SMB (2004) Free radical modification of LDPE with vinyltriethoxysilane. Eur Polymer J 40:1119–1126. doi:10.1016/j.eurpolymj.2004.01.008

    Article  CAS  Google Scholar 

  16. Rezanavaz R, Aghjeh R, Babaluo AA (2010) Rheology, morphology, and thermal behaviour of HDPE/clay nanocomposites. Polym Compos 31:1028–1036. doi:10.1002/pc.20889

    CAS  Google Scholar 

  17. Durmus A, Kasgoz A, Macosko CW (2008) Mechanical aspect of linear polyethylene (LLDPE)/clay nanocomposites: estimation of aspect ratio and interfacial strength by composites models. J Macromol Sci Part B Phys 47:608–619. doi:10.1080/00222340801957780

    Article  CAS  Google Scholar 

  18. Hwang KJ, Park JW, Kim I, Ha CS, Kim GH (2006) Effect of a compatibilizer on the microstructure and properties of partially biodegradable LDPE/aliphatic polyester/organoclay nanocomposites. Macromol Res 14:179–186. doi:10.1007/BF03218506

    Article  CAS  Google Scholar 

  19. Supri AG, Salmah H, Hazwan K (2008) Low density polyethylene-nanoclay composites: The effect of poly(acrylic acid) on mechanical properties, XRD, morphology properties and water absorption. Malays Polymer J 3:39–53

    Google Scholar 

  20. Teymouri Y, Nazockdast H (2011) The effect of process parameter on physical and mechanical properties of commercial low density polyethylene/ORG-MMT nanocomposites. J Mater Sci 46:6642–6647. doi:10.1007/s10853-011-5616-3

    Article  CAS  Google Scholar 

  21. Stoeffler K, Lafleur PG, Sarazin FP, Bureau MN, Denault J (2011) Micro-mechanisms of deformation in polyethylene/clay micro- and nanocomposites. Compos A 42:916–927. doi:10.1016/j.compositesa.2011.03.020

    Article  Google Scholar 

  22. Pakdaman AS, Morshedian J, Jahani Y (2012) Influence of the silane crafting of polyethylene on the morphology, barrier, thermal, and rheological properties of high- density polyethylene/organoclay nanocomposites. J Appl Polym Sci 125:E305–E313. doi:10.1002/app.36367

    Article  Google Scholar 

  23. Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57:50–56. doi:10.1002/pi.2310

    Article  CAS  Google Scholar 

  24. Lu H, Hu Y, Li M, Chen Z, Fan W (2006) Structure characteristics and thermal properties of silane-grafted-polyethylene/clay nanocomposite prepared by reactive extrusion. Compos Sci Technol 66:3035–3039. doi:10.1016/j.compscitech.2006.01.018

    Article  CAS  Google Scholar 

  25. Azizi H, Morshedian J, Barikani M, Wagner MH (2010) Effect of layered silicate nanoclay on the properties of silane crosslinked linear low-density polyethylene (LLDPE). eXPRESS. Polymer Lett 4:252–262. doi:10.3144/expresspolymlett.2010.32

    Article  CAS  Google Scholar 

  26. Rezanejad S, Kokabi M (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polymer J 43:2856–2865. doi:10.1016/j.eurpolymj.2007.04.031

    Article  CAS  Google Scholar 

  27. LU H, HU Y, Yang L, Wang Z, Chen Z, Fan W (2005) Preparation and thermal characteristics of silane-grafted polyethylene/montmorillonite nanocomposites. J Mat Sci 40:43–46. doi:10.1007/s10853-005-5685-2

    Article  CAS  Google Scholar 

  28. Chen WC, Lai SM, Qiu RY, Tang SX (2012) Role of silane crosslinking on the properties of melt blended metallocene polyethylene-g-silane/clay nanocomposites at various clay contents. J Appl Polym Sci 124:2669–2681. doi:10.1002/app.35261

    Article  CAS  Google Scholar 

  29. Mirabella FM, Bafna A (2002) Determination of the crystallinity of polyethylene/α-olefin copolymers by thermal analysis: Relationship of the heat of fusion of 100% polyethylene crystal and the density. J Polym Sci Part B Polym Phys 40:1637–1643

    Article  CAS  Google Scholar 

  30. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584. doi:10.1016/j.polymdegradstab.2007.11.008

    Article  CAS  Google Scholar 

  31. Abdelwahad M, Agag T, Akelah A, Takeichi T (2012) Synthesis and characterization of methyl methacrylate modified vinylester resin-clay nanocomposites. Open Macromol J 6:20–27

    Article  Google Scholar 

  32. Alagar M, Abdul Majeed SM, Nagendiran S (2005) Preparation and characterization of vinyltriethoxysilane grafted ethylene propylene diene terpolymer/linear low density polyethylene (EPDM-g-VTES/LLDPE) blends. Polymer Adv Technol 16:582–591. doi:10.1002/pat.626

    Article  CAS  Google Scholar 

  33. Kusmono ZA, Mohd Ishak, Chow WS, Rochmadi TT (2010) Effect of clay modification on the morphology, mechanical, and thermal properties of polyamide 6/polypropylene/montmorillonite nanocomposites. Polym Compos 31:1156–1167. doi:10.1002/pc.20902

    CAS  Google Scholar 

  34. Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189. doi:10.1016/j.polymdegradstad.2004.08.005

    Article  CAS  Google Scholar 

  35. Onischuk AA, Panfilov VN (2001) Mechanism of thermal decomposition of silanes. Russ Chem Rev 70:321–332. doi:10.1070/RC2001v070n04ABEH000603

    Article  CAS  Google Scholar 

  36. Zanetti M, Bracco P, Costa L (2004) Thermal degradation behaviour of PE/clay nanocomposites. Polym Degrad Stab 85:657–665. doi:10.1016/j.polymdegradstab.2004.03.005

    Article  CAS  Google Scholar 

  37. Nese A, Sen S, Tasdelen MA, Nugay N, Yagci Y (2006) Clay-PMMA nanocomposites by radical polymerization using intercalated phenacyl pyridinium salt initiators. Macromol Chem Phys 207:820–826. doi:10.1002/macp.200500511

    Article  CAS  Google Scholar 

  38. Wang L, Wang K, Chen L, Zhang Y, He C (2006) Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Compos A 37:1890–1896. doi:10.1016/j.compsitesa.2005.12.020

    Article  Google Scholar 

  39. Molefi JA, Luyt AS (2010) Comparison of the influence of copper micro- and nano-particles on the mechanical properties of polyethylene/copper composites. J Mat Sci 45:82–88. doi:10.1007/s10853-009-3894-9

    Article  CAS  Google Scholar 

  40. Mark J, Ngai K, Graessley W, Mandelkern L, Samulski E, Koenig J, Wignall G (2003) Physical properties of polymers, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  41. Nouri MR (2005) Thermal and dynamic mechanical properties of a polypropylene random copolymer. Iran Polym J 14:485–493

    Google Scholar 

  42. Mohanty S, Nayak SK (2007) Melt blended polystyrene/layered silicates nanocomposites: Effect of clay modification on the mechanical, thermal, morphological and viscoelastic behaviour. J Thermoplast Compos Mat 20:175–193. doi:10.1177/0892705707073180

    Article  CAS  Google Scholar 

  43. Morawiec J, Pawlak A, Slouf M, Galeski A, Piorkowska E, Krasnikowa N (2005) Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. Eur Polymer J 41:1115–1122. doi:10.1016/j.eurpolymj.2004.11.011

    Article  CAS  Google Scholar 

  44. Hidalgo M, Beltran MI, Reinecke H, Mijango C (1998) Thermal and mechanical properties of silane-crosslinked poly (vinylchloride). J Appl Polym Sci 70:865–872

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Research Foundation in South Africa and the University of the Free State are acknowledged for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Luyt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibeko, M.A., Luyt, A.S. Preparation and characterisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays. Polym. Bull. 71, 637–657 (2014). https://doi.org/10.1007/s00289-013-1083-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1083-0

Keywords

Navigation