Skip to main content
Log in

Oligomeric aliphatic/aromatic poly(amides) containing silicon in the main chain and phthalimide or tetrahalophthalimide moieties as side groups

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Oligomeric aliphatic poly(amides) (PAs) with phthalimide or tetrahalophthalimide were obtained from aspartic and glutamic acids which reacted previously with phthalic or tetrahalophtalic anhydrides, and the diamine bis(4-aminophenyl)-diphenylsilane, by direct polycondensation according to the Yamazaki method. PAs were characterized by IR and 1H, 13C and 29Si NMR, inherent viscosity measurements and optical activity. The results showed low η inh values due to the insolubility of the PAs in the reaction media. All PAs were soluble in aprotic polar solvents and partially soluble in other common solvents as CHCl3 and THF. The T g values for the PAs derived from aspartic acid showed an increase when the size of the halogen atom is increased due to the more rigidity of the imide group. For those PAs derived from glutamic acid the influence of the side groups was less important due probably to the higher influence of the longer aliphatic main chain. The thermal degradation analysis showed that PAs have good TDT values with the exception of PA-7. The temperature for 50 % of weight loss for both PAs series was dependent on the nature of the halogen, showing an increase when the halogen was more electronegative. PAs do not showed good optical properties, with the exception of PA-1 and PA-6 without halogen atoms in the side chain, due to the increase of the volume of the side group which affects their mobility increasing their packing. It is possible to see a low increase of the transmittance when the aliphatic chain is increased from aspartic to glutamic acid due to an increase of the flexibility of the main chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Mallakpour S, Kowsari E (2005) Synthesis and characterization of new optically active poly(amide-imide)s containing epiclon and l-methionine moieties in the main chain. Polym Adv Technol 16:732. doi:10.1002/pat.648

    Article  CAS  Google Scholar 

  2. González-Henríquez CM, Tagle LH, Terraza CA, Leiva A, Barriga Gonzalez A, Volkmann UG, Cabrera AL, Ramos-Moore E, Pavez-Moreno M (2012) Thiophene- and silarylene-containing polyesters. Resonance effect on conductivity after polarization in an external electric field. Polym Int 61:810. doi:10.1002/pi.4147

    Article  Google Scholar 

  3. Tagle LH, Terraza CA, Ortiz P, Rodriguez MJ, Tundidor-Camba A, Leiva A, Gonzalez-Henriquez CM, Cabrera AL, Volkmann UG, Ramos-Moore E (2012) Synthesis of oligomeric silicon-containing poly(imide-amide)s derived from trimellitic anhydride and amino-acids. Vibration spectral, optical, thermal and morphological characterization. J Macromol Sci Part A Pure Appl Chem 49:562. doi:10.1080./10601325.2012.687963

    Article  CAS  Google Scholar 

  4. Liaw DJ, Liaw BY (2001) Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer 42:839. doi:10.1016/s0032-3861

    Article  CAS  Google Scholar 

  5. Nakata S, Brisson J (1997) Preparation of aromatic copolyamides containing regularly placed 1,6-hexamethylenediamine units. J Polym Sci Part A: Polym Chem 35:2379. doi:10.1002/(SICI)1099-0518(19970915)

    Article  CAS  Google Scholar 

  6. Liaw DJ, Hsu PN, Liaw BY (2001) Synthesis and characterization of novel polyamide-imides containing noncoplanar 2,2′-dimethyl-4,4′-biphenylene unit. J Polym Sci Part A Polym Chem 39:63. doi:10.1002/1099-0518(20010101)

    Article  CAS  Google Scholar 

  7. Tagle LH, Terraza CA, Villagra H, Tundidor-Camba A (2011) Poly(imide-amide)s and poly(imide-ester)s base don silarylene units containing (l)-alanine moiety: synthesis and characterization. Polym Bull 67:1799. doi:10.1007/s00289-011-0507-y

    Article  CAS  Google Scholar 

  8. Tagle LH, Terraza CA, Leiva A, Yazigi N, Lopez L (2010) Poly(imide-amides) and poly(imide-ester)s obtained from N,N′-(4,4′Me,R-diphthaloyl)-bis-glycine acid dichloride (R=Me, Et): synthesis, characterization and thermal studies. J Appl Polym Sci 117:1526. doi:10.1002/app.32007

    CAS  Google Scholar 

  9. Tagle LH, Terraza CA, Leiva A, Coll D (2012) Silicon-containing oligomeric poly(amides) with phthalimidyl-amide side groups: synthesis, characterization and thermal studies. High Perform Polym 24:77. doi:10.1177/0954008311431348

    Article  CAS  Google Scholar 

  10. Mallakpour S, Zadahnazari A (2011) Advances in synthetic optically active condensation polymers—a review. eX Polym Lett 5:142–181. doi:10.3144/expresspolymlett.2011.15 (and the references therein)

    Article  CAS  Google Scholar 

  11. Mallakpour S, Dinari M (2008) Microwave step-growth polymerization of 5-(4-methyl-2-phthalimidylpentanoylamino)isophthalic Acid with different diisocyanates. Polym Adv Technol 19:1334. doi:10.1002/PAT.1142

    Article  CAS  Google Scholar 

  12. Mallakpour S, Taghavi M (2008) A facile, microwave-assisted synthesis of novel optically active polyamides derived from 5-(3-methyl-2-phthalimidylpentanoylamino)isophthalic acid and different diisocyanates. Eur Polym J 44:87. doi:10.1016/jeorpolymj.2007.10.027

    Article  CAS  Google Scholar 

  13. Mallakpour S, Sepehri S (2008) Preparation of new optically active polyamides containing a l-phenylalanine, phthalimide side-chain via the diisocyanate route by microwave energy: comparison with conventional heating. Des Monomers Polym 11:535. doi:10.1163/156855508X363825

    Article  CAS  Google Scholar 

  14. Sava I, Bruma M, Schulz B, Kopnick T (2005) Comparison of properties of silicon-containing poly(amide-imide)s. High Perform Polym 17:483. doi:10.1177/0954008305044162 (and the references therein)

    Article  CAS  Google Scholar 

  15. Bruma M, Schulz B (2001) Silicon-containing aromatic polymers. J Macromol Sci 41:1. doi:10.1081/MC-1000002054

    Article  Google Scholar 

  16. Tagle LH, Terraza CA, Valenzuela P, Leiva A, Urzua M (2005) Thermal studies of poly(esters) containing silicon or germanium in the main chain. Thermochim Acta 425:115. doi:10.1016/j.tca.2004.06.008

    Article  CAS  Google Scholar 

  17. Tagle LH, Diaz FR, Vega JC, Valenzuela P (2003) Synthesis and characterization of poly(esters) derived from diacids and diphenols containing silicon and germanium. Eur Polym J 39:407. doi:10.1016/s0014-3057(02)00226-4

    Article  CAS  Google Scholar 

  18. Mattern DL (1984) Direct aromatic periodination. J Org Chem 49:3051. doi:10.1021/jo00191a003

    Article  CAS  Google Scholar 

  19. Sakhautdinov IM, Leont’eva NA, Galin FZ, Vafina GF (2008) Synthesis of pirrolizidine- and indolizinedione derivatives based on N-phthalylaspartic acid. Russ J Org Chem 44:1009. doi:10.1134/s1070428008070117

    Article  CAS  Google Scholar 

  20. Yeganeh H, Ghasemi N, Taromi FA (2005) Synthesis and characterization of novel nonsegmented polyamides and polyurethanes with enhanced flame retardancy properties. Iran Polym J 14:539

    CAS  Google Scholar 

  21. Faghihi K, Absalar M, Hajibeygi M (2010) Synthesis and characterization of new optically active polyamides containing 2-(4-nitro-1,3-dioxoisoindolin-2-yl)succinic acid and aromatic diamines via direct polycondensation. Turk J Chem 34:81. doi:10.3906/kim-0811-4

    CAS  Google Scholar 

  22. Pratt JR, Massey WD, Pinkerton FM, Thames SF (1975) Organosilicon compounds. XX. Synthesis of aromatic diamines via trimethylsilyl protecting aniline intermediates. J Org Chem 40:1090. doi:10.1021/jo00896a021

    Article  CAS  Google Scholar 

  23. Yamazaki N, Matsumoto N, Higashi F (1975) Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci Part A: Polym Chem 13:1373. doi:10.1002/pol.1975.170130609

    CAS  Google Scholar 

  24. Vikic D, Mintas M, Vorkpic-Furac J, Willard PG (1990) Carbon-fluorine coupling constants in C-13 NMR spectra of some substituted N-aryl-pyrroles. Bull Chem Technol Macedonia 9:119

    Google Scholar 

  25. Schwarzer A, Weber E (2008) Influence of fluorine substitution on the crystal packing of N-phenylmaleimides and corresponding phthalimides. Cryst Growth Design 8:2862. doi:10.2021(cg7011638

    Article  CAS  Google Scholar 

  26. Terraza CA, Tagle LH, Tundidor-Camba A, Gonzalez-Henriquez C, Ortiz P, Coll D (2012) Poly(amide)s obtained from 4-(4-((4-(4-aminophenoxy)phenyl)phenyl)diphenyl-silyl)phenoxy)benzeneamine and dicarboxylic acids containing diphenylsilarylene units. Synthesis and characterization. Eur Polym J 48:649. doi:10.1016/j.eurpolymj.2012.01.007

    Article  CAS  Google Scholar 

  27. Terraza CA, Tagle LH, Mejias D, Tundidor-Camba A, Ortiz P, Muñoz D, Alvarez F, Gonzalez-Henriquez CM (2013) Synthesis and characterization of new poly(amide)s derived from bis(4-(4-aminophenoxy)phenyl)-methylphenylsilane and bis (4-carboxyphenyl)R1R2silane acids. Polym Bull 70:773. doi:10.1007/s00289-012-0824-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge “Fondo Nacional de Investigación Científica y Tecnológica”, FONDECYT, through Project 1100015. A.T.C. acknowledges CONICYT for Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Tagle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagle, L.H., Terraza, C.A., Tundidor-Camba, A. et al. Oligomeric aliphatic/aromatic poly(amides) containing silicon in the main chain and phthalimide or tetrahalophthalimide moieties as side groups. Polym. Bull. 71, 287–300 (2014). https://doi.org/10.1007/s00289-013-1061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1061-6

Keywords

Navigation