Skip to main content
Log in

Synthesis of ambient temperature self-crosslinking VTES-based core–shell polyacrylate emulsion via modified micro-emulsion polymerization process

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Modified micro-emulsion polymerization was successfully used to synthesize a kind of ambient temperature self-crosslinking core–shell emulsion, consisting of polyacrylate core and vinyltriethoxysilane (VTES) modified polyacrylate shell, by varying the ratio of soft monomer (BA) and hard monomer (MMA) which is different in the core and shell. The emulsion and its film formed at ambient temperature were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Core–shell structure was clearly shown in TEM micrographs, and two distinct glass transition temperatures (T g) were confirmed by DSC analysis. Lower T g of core phase analyzed by DSC and self-crosslinking properties of VTES characterized by crosslinking degree cause latex particles form continuous film at ambient temperature. Thermal and mechanical properties and the surface properties of the latex films were also investigated. Results showed that the core–shell latex films containing 5 and 7.5 % VTES exhibited higher thermal stability, better mechanical properties, higher contact angle, and water resistance compared with pure polyacrylate film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amalvy JI (1996) Semicontinuous emulsion polymerization of methyl methacrylate, ethyl acrylate, and methacrylic acid. J Appl Polym Sci 59:339–344

    Article  CAS  Google Scholar 

  2. Tigli RS, Evren V (2005) Synthesis and characterization of pure poly(acrylate) latexes. Prog Org Coat 52:144–150

    Article  CAS  Google Scholar 

  3. Bakhshi H, Mohammad J, Mehr Z, Bouhendi H, Kabiri K (2011) Effect of functional monomer GMA on the physical–mechanical properties of coatings from poly(BA-MMA) latexes. J Mater Sci 46:2771–2777

    Article  CAS  Google Scholar 

  4. Chen YJ, Zhang CC, Wang YF, Cheng SY, Chen PZ (2003) Study of self-crosslinking acrylate latex containing fluorine. J Appl Polym Sci 90:3609–3616

    Article  CAS  Google Scholar 

  5. Esser RJ, Devona JE, Setzke DE, Wagemans L (1999) Waterbased crosslinkable surface coatings. Prog Org Coat 36:45–52

    Article  CAS  Google Scholar 

  6. Inigo G, Jose MA, Jose RL (2006) Crosslinking in acetoacetoxy functional waterborne crosslinkable latexes. Macromol Symp 243:53–62

    Article  Google Scholar 

  7. Liu XH, Zhang CZ, Xiong T, Chen DB, Zhong AY (2007) Rheological and curing behavior of aqueous ambient self-crosslinkable polyacrylate emulsion. J Appl Polym Sci 106:1448–1455

    Article  CAS  Google Scholar 

  8. Christos K, Irini DS (2010) Synthesis and characterization of latexes based on copolymers BA\MMA\DAAM and BA\MMA\VEOVA-10\DAAM and the corresponding 1 K crosslinkable binder using the adipic acid dihydrazide as crosslinking agent. Prog Org Coat 69:504–509

    Article  Google Scholar 

  9. Huang SQ, Fan DQ, Lei YQ, Huang H (2004) Alkoxysilane-functionalized acrylic copolymer latexes. I. Particle size, morphology, and film-forming properties. J Appl Polym Sci 94:954–960

    Article  CAS  Google Scholar 

  10. Guo TY, Chen X, Hao GJ, Song MD, Zhang BH (2005) Preparation and properties of room temperature self-crosslinking poly(MMA-co-BA-co-St-co-VTES) latex film. Adv Polym Technol 24:288–295

    Article  CAS  Google Scholar 

  11. Chen X, Guo TY, Hao GJ, Song MD, Zhang BH (2007) Preparation of (tri-isopropoxidesilane) acrylate latex and the properties of its film formed in room temperature. e-Polymers no. 084

  12. Zhu XL, Wang HY, Kong XZ, Zhang ZG (2009) Preparation and characterization of ambient self-crosslinking acrylic polymer latexes. Acta Polym Sin 1(5):471–477

    Article  Google Scholar 

  13. Guo TY, Chen X, Song MD, Zhang BH (2006) Preparation and properties of core [poly(styrene-n-butyl acrylate)]-shell [poly(styrene-methyl methacrylate-vinyl triethoxide silane)] structured latex particles with self-crosslinking characteristics. J Appl Polym Sci 100:1824–1830

    Article  CAS  Google Scholar 

  14. Liu BL, Deng XB, Cao SS, Li SJ, Luo R (2006) Preparation and characterization of core/shell particles with siloxane in the shell. Prog Org Coat 252:2235–2241

    CAS  Google Scholar 

  15. Liu BL, Zhang BT, Cao SS, Deng XB, Hou XH, Chen HL (2008) Preparation of the stable core–shell latex particles containing organic-siloxane in the shell. Prog Org Coat 61:21–27

    Article  CAS  Google Scholar 

  16. Mu YC, Qiu T, Li XY (2009) Monodisperse and multilayer core–shell latex via surface cross-linking emulsion polymerization. Mater Lett 63:1614–1617

    Article  CAS  Google Scholar 

  17. Cheng XL, Chen ZX, Shi TS, Wang HY (2007) Synthesis and characterization of core–shell LIPN-fluorine-containing polyacrylate latex. Colloid Surf A 292:119–124

    Article  CAS  Google Scholar 

  18. Cui XJ, Zhong SL, Gao Y, Wang HY (2008) Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles. Colloid Surf A 324:14–21

    Article  CAS  Google Scholar 

  19. Lami EB, Tissot I, Lefebvre F (2002) Synthesis and characterization of SiOH-functionalized polymer latexes using methacryloxy propyl trimethoxysilane in emulsion polymerization. Macromolecules 35:6185–6191

    Article  Google Scholar 

  20. Ni KF, Shan GR, Weng ZX, Othman NS, Fevotte G, Lefebvre S, Lami EB (2005) Synthesis of hybrid core–shell nanoparticles by emulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules 38:7321–7329

    Article  CAS  Google Scholar 

  21. Suresh KI, Vishwanatham S, Bartsch E (2007) Viscoelastic and damping characteristics of poly(n-butyl acrylate)-poly(n-butyl methacrylate) semi-IPN latex films. Polym Adv Technol 18:364–372

    Article  CAS  Google Scholar 

  22. Zhang JD, Yang MJ, Zhu YR, Yang H (2006) Synthesis and characterization of crosslinkable latex with interpenetrating network structure based on polystyrene and polyacrylate. Polym Int 55:951–960

    Article  CAS  Google Scholar 

  23. Chen LJ, Wu FQ, Zhuang XY, Yang J, Li RX (2008) Preparation of styrene-acrylate latex used in ultra-low VOC building internal wall coating. J Wuhan Univ Technol 23:65–70

    Article  Google Scholar 

  24. Pérez-Carrillo LA, Puca M, Rabelero M, Meza KE, Puig JE, Mendizábal E, López-Serranob F, Lópezc RG (2007) Effect of particle size on the mechanical properties of polystyrene and poly(butyl acrylate) core/shell polymers. Polymer 48:1212–1218

    Article  Google Scholar 

  25. Liang JY, He L, Li WD, Luo HJ (2009) Synthesis and analysis of properties of a new core–shell silicon-containing fluoroacrylate latex. Polym Int 58:1283–1290

    Article  CAS  Google Scholar 

  26. Xiao XY, Xu R (2011) Preparation and surface properties of core–shell polyacrylate latex containing fluorine and silicon in the shell. J Appl Polym Sci 119:1576–1585

    Article  CAS  Google Scholar 

  27. Landfester K, Rothe R, Antonietti M (2002) Convenient synthesis of fluorinated latexes and core–shell structures by miniemulsion polymerization. Macromolecules 35:1658–1662

    Article  CAS  Google Scholar 

  28. Cui XJ, Zhong SL, Wang HY (2007) Emulsifier-free core–shell polyacrylate latex nanoparticles containing fluorine and silicon in shell. Polymer 48:7241–7248

    Article  CAS  Google Scholar 

  29. Cui XJ, Zhong SL, Wang HY (2007) Synthesis and characterization of emulsifier-free core–shell fluorine-containing polyacrylate latex. Colloid Surf A 303:173–178

    Article  CAS  Google Scholar 

  30. Aguiar A, Villegas SG, Rabelero M, Mendizabal E, Puig JE (1999) Core–shell polymers with improved mechanical properties prepared by microemulsion polymerization. Macromolecules 32:6767–6771

    Article  CAS  Google Scholar 

  31. Ming WH, Jones FN, Fu SK (1998) Synthesis of nanosize poly(methyl methacrylate) microlatexes with high polymer content by a modified microemulsion polymerization. Polym Bull 40:749–756

    Article  CAS  Google Scholar 

  32. He GW, Pan QM, Rempel GL (2003) Synthesis of poly(methyl methacrylate) nanosize particles by differential microemulsion polymerization. Macromol Rapid Commun 24:585–588

    Article  CAS  Google Scholar 

  33. He GW, Pan QM (2004) Synthesis of polystyrene and polystyrene/poly(methyl methacrylate) nanoparticles. Macromol Rapid Commun 25:1545–1548

    Article  CAS  Google Scholar 

  34. Xu P, Zhong W, Wang HT, Tong R, Du QG (2004) On the copolymerization of acrylates in the modified microemulsion process. Colloid Polym Sci 282:1409–1414

    Article  CAS  Google Scholar 

  35. Zhang L, Zhang C, Li GM (2007) Synthesis and properties of copolymer microemulsions of siloxane and acrylate with a high solid content. J Appl Polym Sci 104:851–857

    Article  CAS  Google Scholar 

  36. Feng XP, Zhong AY, Chen DB (2006) Preparation and properties of poly(silicone-co-acrylate)/montmorillonite nanocomposite emulsion. J Appl Polym Sci 101:3963–3970

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Natural Science Foundation of Guangdong Province of China (Project No: 8251065004000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-geng Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yf., Miao, L., Yang, Cl. et al. Synthesis of ambient temperature self-crosslinking VTES-based core–shell polyacrylate emulsion via modified micro-emulsion polymerization process. Polym. Bull. 70, 1631–1645 (2013). https://doi.org/10.1007/s00289-012-0867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0867-y

Keywords

Navigation