Skip to main content
Log in

Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The poly(l-lactide) (PLLA) biocompatible and biodegradable polymer was reinforced with functionalized Multiwalled carbon nanotubes (MWCNTs) to overcome on insufficient mechanical properties of this polymer for high load bearing applications. To fully realize the potential of MWCNTs for this purpose, they have to be homogeneously dispersed in polymer matrix and have efficient load transfer across the MWCNTs/polymer interface. The pristine MWCNTs (pMWCNTs) were functionalized, at first, by Friedel–Crafts acylation, which introduced the aromatic amine groups on the sidewall of MWCNTs (MWCNT–NH2) without shortening or cutting of pMWCNTs. And then, the PLLA chains covalently grafted from the sidewall of MWCNT–NH2 by in situ ring-opening polymerization of l-lactide oligomers using stannous octanoate as the initiating system. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy spectra revealed that the PLLA chains grafted form the sidewall of MWCNTs strongly. The surface morphology of pristine and PLLA-grafted MWCNTs (MWCNT-g-PLLAs) was characterized by scanning electron microscopy and transmission electron microscopy. The tensile test of prepared composites of PLLA with various concentrations of MWCNT-g-PLLAs show a significant increment in tensile strength and elongation at failure of composites with increasing the concentration of MWCNT-g-PLLAs in composites. Also, it is found that the MWCNT-g-PLLAs increased the photoluminescence effect of PLLA and widened the luminescence region of PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12

Similar content being viewed by others

References

  1. Ratna D, Karger-Kocsis JJ (2008) Recent advances in shape memory polymers and composites: a review. Mater Sci 43:254–269

    Article  CAS  Google Scholar 

  2. Pohjonen T, Helevirta P, Tormälä P, Koskikare K, Patiälä H, Rokkanen P (1997) Strength retention of self-reinforced poly-l-lactide screws. A comparison of compression moulded and machine cut screws. J Mater Sci Mater Med 8:311–320

    Article  CAS  Google Scholar 

  3. Loh XJ, Colin Sng KB, Li J (2008) Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone). Biomaterials 29:3185–3194

    Article  CAS  Google Scholar 

  4. Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH (2004) In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-e-caprolactone) scaffolds. Biomaterials 25:5939–5946

    Article  CAS  Google Scholar 

  5. Lu XL, Cai W, Gao ZY, Tagn WJ (2007) Shape memory effects of poly(l-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58:381–391

    Article  CAS  Google Scholar 

  6. Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharmaceutics 282:1–18

    Article  CAS  Google Scholar 

  7. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780

    Article  CAS  Google Scholar 

  8. Xua Z, Hub PA, Wanga S, Wang XB (2008) Biological functionalization and fluorescent imaging of carbon nanotubes. Appl Surface Sci 254:1915–1918

    Article  Google Scholar 

  9. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  10. Dai H (2002) Carbon nanotubes: Synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  11. Liu Z, Tabakman S, Welsher K, Dai HJ (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  CAS  Google Scholar 

  12. Coleman JN, Khan U, Gunko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  13. Moniruzzaman MI, Winey KI (2004) Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006 39:5194–5205

    Article  Google Scholar 

  14. Coleman JN, Cadek M, Blake R, Nikolosi V, Ryan KP, Belton C et al (2004) High-performance nanotube reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798

    Article  CAS  Google Scholar 

  15. Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly (e-caprolactone). Macromolecules 40:1538–1545

    Article  CAS  Google Scholar 

  16. Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46:320–328

    Article  CAS  Google Scholar 

  17. Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915

    Article  CAS  Google Scholar 

  18. Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225

    Article  CAS  Google Scholar 

  19. Daniel AU, Chang MKO, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78

    Article  Google Scholar 

  20. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerômé R (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on bioglass-filled polylactide foams. Biomed Mater Res A 66:335–346

    CAS  Google Scholar 

  21. Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate–polylactide composites. Biomaterials 23:1579–1585

    Article  CAS  Google Scholar 

  22. Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23

    Article  CAS  Google Scholar 

  23. Zhang D, Kandadai MA, Cech J, Roth S, Seamus A, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (mwcnt) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915

    Article  CAS  Google Scholar 

  24. Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J. Polym Sci B 45:3137–3147

    Article  CAS  Google Scholar 

  25. Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecule 10:417–424

    Article  CAS  Google Scholar 

  26. Jana RN, Cho JW (2008) Thermal stability, crystallization behavior, and phase morphology of poly(ε-caprolactone) diol-grafted-multiwalled carbon nanotubes. J Appl Polym Sci 110:1550–1558

    Article  CAS  Google Scholar 

  27. Chen GX, Kim HS, Park BH, Yoon JS (2007) Synthesis of poly(l-lactide)-functionalized multiwalled carbon nanotubes by ring-opening polymerization. Macromol Chem Phys 208:389–398

    Article  CAS  Google Scholar 

  28. Kim HS, Park BH, Yoon JS, Jin H (2007) Thermal and electrical properties of poly(l-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43:1729–1735

    Article  CAS  Google Scholar 

  29. Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47:8019–8025

    Article  CAS  Google Scholar 

  30. Saeed K, Park SY (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104:1957–1963

    Article  CAS  Google Scholar 

  31. Chen GX, Shimizu H (2008) Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(l-lactide) matrix. Polymer 49:943–951

    Article  CAS  Google Scholar 

  32. Zeng HL, Gao C, Yan DY (2006) Poly(e-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818

    Article  CAS  Google Scholar 

  33. Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly(l-lactide-co-ε-caprolactone) biodegradable copolymers. Appl Surface Sci 256:170–177

    Article  Google Scholar 

  34. Yoon JT, Lee SC, Jeong YG (2010) Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos Sci Technol 70:776–782

    Article  CAS  Google Scholar 

  35. Miyata T, Masuko T (1997) Morphology of poly(l-lactide) solution-grown crystals. Polymer 38:4003–4009

    Article  CAS  Google Scholar 

  36. Pirlot C, Willems I, Fonseca A, Nagy JB, Delhalle J (2002) Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv Eng Mater 4:109–115

    Article  CAS  Google Scholar 

  37. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    Article  CAS  Google Scholar 

  38. Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan R (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1–14

    Google Scholar 

Download references

Acknowledgment

This study supported by the Excellent Youth Foundation of Heilongjiang Province of China (No. JC200715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirian, M., Nabipour Chakoli, A., Sui, J.H. et al. Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym. Bull. 68, 1747–1763 (2012). https://doi.org/10.1007/s00289-012-0700-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0700-7

Keywords

Navigation