Skip to main content
Log in

The role of natural recovery category in malaria dynamics under saturated treatment

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the process of malaria transmission, natural recovery individuals are slightly infectious compared with infected individuals. Our concern is whether the infectivity of natural recovery category can be ignored in areas with limited medical resources, so as to reveal the epidemic pattern of malaria with simpler analysis. To achieve this, we incorporate saturated treatment into two-compartment and three-compartment models, and the infectivity of natural recovery category is only reflected in the latter. The non-spatial two-compartment model can admit backward bifurcation. Its spatial version does not possess rich dynamics. Besides, the non-spatial three-compartment model can undergo backward bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcation. For spatial three-compartment model, due to the complexity of characteristic equation, we apply Shengjin’s Distinguishing Means to realize stability analysis. Further, the model exhibits Turing instability, Hopf bifurcation and Turing–Hopf bifurcation. This makes the model may admit bistability or even tristability when its basic reproduction number less than one. Biologically, malaria may present a variety of epidemic trends, such as elimination or inhomogeneous distribution in space and periodic fluctuation in time of infectious populations. Notably, parameter regions are given to illustrate substitution effect of two-compartment model for three-compartment model in both scenarios without or with spatial movement. Finally, spatial three-compartment model is used to present malaria transmission in Burundi. The application of efficiency index enables us to determine the most effective method to control the number of cases in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abboubakar H, Kamgang JC, Nkamba LN, Tieudjo D (2018) Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases. J Math Biol 76:379–427

    MathSciNet  PubMed  Google Scholar 

  • An LTT, Jäger W (2014) A quantitative model of population dynamics in malaria with drug treatment. J Math Biol 69:659–685

    MathSciNet  PubMed  Google Scholar 

  • Anita S, Capasso V (2012) Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete Contin Dyn Syst Ser B 17(6):1673–1684

    MathSciNet  Google Scholar 

  • Bai ZG, Peng R, Zhao XQ (2018) A reaction-diffusion malaria model with seasonality and incubation period. J Math Biol 77:201–228

    MathSciNet  PubMed  Google Scholar 

  • Becker N, Petrić D, Zgomba M, Boase C, Dahl C, Madon M, Kaiser A (2010) Mosquitoes and their control. Springer, Berlin

    Google Scholar 

  • Bousema T, Okell L, Shekalaghe S, Griffin JT, Omar S, Sawa P, Sutherland C, Sauerwein R, Ghani AC, Drakeley C (2010) Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malar J 9:136

    PubMed  PubMed Central  Google Scholar 

  • Brauer F, Castillo-Chavez C (2012) Mathematical models in population biology and epidemiology. Springer, New York

    Google Scholar 

  • Burundi Ministry of Public Health and the Fight Against AIDS (2023) Bulletins. http://minisante.bi/. Accessed 1 Jan 2023

  • Castillo-Chavez C, Song BJ (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1:361–404

    MathSciNet  PubMed  Google Scholar 

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272–1296

    MathSciNet  PubMed  Google Scholar 

  • Feng ZL, Yi YF, Zhu HP (2004) Fast and slow dynamics of malaria and the S-gene frequency. J Dyn Differ Equ 16(4):869–896

    MathSciNet  Google Scholar 

  • Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31:53–98

    ADS  MathSciNet  Google Scholar 

  • Gao YX, Zhang WP, Liu D, Xiao YJ (2017) Bifurcation analysis of an SIRS epidemic model with standard incidence rate and standard treatment function. J Appl Anal Comput 7(3):1070–1094

    MathSciNet  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Google Scholar 

  • Gutierrez JB, Galinski MR, Cantrell S, Voit EO (2015) From within host dynamics to the epidemiology of infectious disease scientific overview and challenges. Math Biosci 270:143–155

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Hu ZY, Teng ZD, Jiang HJ (2012) Stability analysis in a class of discrete SIRS epidemic models. Nonlinear Anal Real World Appl 13(5):2017–2033

    MathSciNet  Google Scholar 

  • Laman M, Davis TME, Manning L (2014) Confirming cerebral malaria deaths in resource-limited settings. Am J Trop Med Hyg 90(2):192

    PubMed  PubMed Central  Google Scholar 

  • Li S, Yuan SL, Jin Z, Wang H (2023) Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator. J Differ Equ 357:32–63

    ADS  MathSciNet  Google Scholar 

  • Lou YJ, Zhao XQ (2010) A climate-based malaria transmission model with structured vector population. SIAM J Appl Math 70(6):2023–2044

    MathSciNet  Google Scholar 

  • Lou YJ, Zhao XQ (2011) A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol 62(4):543–568

    MathSciNet  PubMed  Google Scholar 

  • Macdonald G (1952) The analysis of equilibrium in malaria. Trop Dis Bull 49(9):813–829

    CAS  PubMed  Google Scholar 

  • Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London

    Google Scholar 

  • Mtove G, Kimani J, Kisinza W, Makenga G, Mangesho P, Duparc S, Nakalembe M, Phiri KS, Orrico R, Rojo R, Vandenbroucke P (2018) Multiple-level stakeholder engagement in malaria clinical trials: addressing the challenges of conducting clinical research in resource-limited settings. Trials 19(1):190

    PubMed  PubMed Central  Google Scholar 

  • Ross R (1911) The prevention of malaria. John Murray, London

    Google Scholar 

  • Schlagenhauf P (2004) Malaria: from prehistory to present. Infect Dis Clin N Am 18(2):189–205

    Google Scholar 

  • Shen H, Song YL, Wang H (2023) Bifurcations in a diffusive resource-consumer model with distributed memory. J Differ Equ 347:170–211

    ADS  MathSciNet  Google Scholar 

  • Shi L, Zhao HY, Wu DY (2021) Dynamical analysis for a reaction-diffusion HFMD model with nonsmooth saturation treatment function. Commun Nonlinear Sci 95:105593

    MathSciNet  Google Scholar 

  • Shi YY, Zhao HY (2021) Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. J Math Biol 82(4):1–44

    MathSciNet  Google Scholar 

  • Shi YY, Zhao HY, Zhang XB (2022) Dynamics of a multi-strain malaria model with diffusion in a periodic environment. J Biol Dyn 16(1):766–815

    MathSciNet  PubMed  Google Scholar 

  • Shi YY, Zhao HY, Zhang XB (2023) Threshold dynamics of an age-space structure vector-borne disease model with multiple transmission pathways. Commun Pure Appl Anal 22(5):1477–1516

    MathSciNet  Google Scholar 

  • Song YL, Zhang TH, Peng YH (2016) Turing–Hopf bifurcation in the reaction-diffusion equations and its applications. Commun Nonlinear Sci 33:229–258

    MathSciNet  Google Scholar 

  • Sun GQ (2012) Pattern formation of an epidemic model with diffusion. Nonlinear Dyn 69:1097–1104

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Takoutsing E, Bowong S, Yemele D, Kurths J (2014) Effects of catastrophic anemia in an intra-host model of malaria. Int J Bifurc Chaos 24(7):1450105

    MathSciNet  Google Scholar 

  • Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. Proc Natl Acad Sci USA 103(16):6242–6247

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang K, Kim YJ (2022) Spatial segregation in reaction-diffusion epidemic models. SIAM J Appl Math 82(5):1680–1709

    MathSciNet  Google Scholar 

  • Wang J, Zhao HY (2022) Bifurcation analysis of multiscale malaria model with Serratia AS1 bacteria and saturated treatment. Int J Bifurc Chaos 32(9):2250134

    MathSciNet  Google Scholar 

  • Wang K, Wang H, Zhao HY (2023) Aggregation and classification of spatial dynamics of vector-borne disease in advective heterogeneous environment. J Differ Equ 343:285–331

    ADS  MathSciNet  Google Scholar 

  • Wang K, Wang H, Zhao HY (2023) On the role of advection in a spatial epidemic model with general boundary conditions. J Differ Equ. https://doi.org/10.1016/j.jde.2023.12.016

    Article  Google Scholar 

  • Wang LP, Zhao HY, Oliva SM, Zhu HP (2017) Modeling the transmission and control of Zika in Brazil. Sci Rep-UK 7(1):7721

    ADS  Google Scholar 

  • Wang WD, Zhao XQ (2012) Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst 11(4):1652–1673

    MathSciNet  Google Scholar 

  • Wang WM, Gao XY, Cai YL, Shi HB, Fu SM (2018) Turing patterns in a diffusive epidemic model with saturated infection force. J Frankl Inst 355(15):7226–7245

    MathSciNet  Google Scholar 

  • Wang ZK, Wang H (2021) Bistable traveling waves in impulsive reaction–advection–diffusion models. J Differ Equ 285:17–39

    ADS  MathSciNet  Google Scholar 

  • World Health Organization (2023) Malaria. https://www.who.int/news-room/fact-sheets/detail/malaria. Accessed 1 July 2023

  • Xiang C, Huang JC, Wang H (2023) Bifurcations in Holling–Tanner model with generalist predator and prey refuge. J Differ Equ 343:495–529

    ADS  MathSciNet  Google Scholar 

  • Xin MZ, Wang BG (2021) Global dynamics of a reaction-diffusion malaria model. Nonlinear Anal Real World Appl 61:103332

    MathSciNet  Google Scholar 

  • Zha YJ, Jiang WH (2023) Global dynamics and asymptotic profiles for a degenerate Dengue fever model in heterogeneous environment. J Differ Equ 348:278–319

    ADS  MathSciNet  Google Scholar 

  • Zhang H, Wang H, Wei JJ (2023) Perceptive movement of susceptible individuals with memory. J Math Biol 86:65

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu XN (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348(1):433–443

    MathSciNet  Google Scholar 

  • Zhao HY, Wang LP, Oliva SM, Zhu HP (2020) Modeling and dynamics analysis of Zika transmission with limited medical resources. Bull Math Biol 82:1–50

    MathSciNet  Google Scholar 

  • Zhao HY, Shi YY, Zhang XB (2022) Dynamic analysis of a malaria reaction–diffusion model with periodic delays and vector bias. Math Biosci Eng 19:2538–2574

    MathSciNet  PubMed  Google Scholar 

  • Zhou LH, Fan M (2012) Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal Real World Appl 13(1):312–324

    MathSciNet  Google Scholar 

  • Zhou TT, Zhang WP, Lu QY (2014) Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function. Appl Math Comput 226:288–305

    MathSciNet  Google Scholar 

  • Zhu LH, He L (2022) Two different approaches for parameter identification in a spatial-temporal rumor propagation model based on Turing patterns. Commun Nonlinear Sci 107:106174

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the anonymous reviewers for their careful reading and valuable suggestions, which have led to substantial improvements in the manuscript. The first two authors are partially supported by the National Natural Science Foundation of China (Nos. 11971013, 12371490). The third author is partially supported by the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant RGPIN-2020-03911 and Discovery Accelerator Supplement Award RGPAS-2020-00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Theorem2

Proof

Due to

$$\begin{aligned} \bar{Q}_{0}>0~\Leftrightarrow \bar{\mathcal {R}}_{0}<1;~~\bar{Q}_{0}=0~\Leftrightarrow \bar{\mathcal {R}}_{0}=1;~~\bar{Q}_{0}<0~\Leftrightarrow \bar{\mathcal {R}}_{0}>1, \end{aligned}$$

\(\bar{g}(I_{h})=0\) admits a unique positive solution for \(\bar{Q}_{0}<0\). Thereby, as \(\bar{\mathcal {R}}_{0}>1\), system admits a unique endemic equilibrium \(\bar{E}_{2}\).

If \(\bar{\mathcal {R}}_{0}<1\), then (9) has two positive roots when \(\bar{Q}_{1}<0\) and \(\Delta >0\), and (9) has no positive roots when \(\bar{Q}_{1}\ge 0\). Moreover, \(\bar{Q}_{1}<0\) if and only if \(\bar{\mathcal {R}}_{0}>\bar{P}_0\). Clearly, if \(\bar{P}_{0}\ge 1\), then system has no endemic equilibrium when \(\bar{\mathcal {R}}_{0}<1\). In addition, one yields that

$$\begin{aligned} \begin{aligned} \bar{P}_{0}<1~\Leftrightarrow ~\alpha>\bar{\alpha }_0,~\Delta>0~\Leftrightarrow ~ 0<\bar{\mathcal {R}}_{0}<\max \{0,~\bar{\mathcal {R}}_{0}^{-}\} ~\textrm{or}~ \bar{\mathcal {R}}_{0}>\bar{\mathcal {R}}_{0}^{+}. \end{aligned} \end{aligned}$$

Thus,  for \(\alpha >\bar{\alpha }_0\) and \(\bar{\mathcal {R}}_{0}^{+}<\bar{\mathcal {R}}_{0}<1\), there are two endemic equilibria \(\bar{E}_{1}\) and \(\bar{E}_{2}\).

For \(\bar{\mathcal {R}}_{0}=1\) and \(\alpha >\bar{\alpha }_0\), \(\bar{Q}_{0}=0\) and \(\bar{Q}_{1}<0\). Hence, system admits a unique endemic equilibrium \(\bar{E}_{2}\).

When \(\bar{\mathcal {R}}_{0}=\bar{\mathcal {R}}_{0}^{+}\) and \(\alpha >\bar{\alpha }_0\), we have \(\Delta =0\),  \(\bar{Q}_{0}>0\) and \(\bar{Q}_{1}<0\). So, there is a unique endemic equilibrium \(\bar{E}_{1}=\bar{E}_{2}\).

When \(\alpha >\bar{\alpha }_0\), \(\Delta <0\) if \(\bar{P}_{0}<\bar{\mathcal {R}}_{0}<\bar{\mathcal {R}}_{0}^{+}\) and \(\bar{Q}_{1}\ge 0\) if \(\bar{\mathcal {R}}_{0}\le \bar{P}_{0}\). Accordingly, for \(\bar{\mathcal {R}}_{0}<\bar{\mathcal {R}}_{0}^{+}\) and \(\alpha >\bar{\alpha }_0\), system has no endemic equilibrium.

If \(\bar{\mathcal {R}}_{0}\le 1\) and \(\alpha \le \bar{\alpha }_0\), then \(\bar{Q}_{1}\ge 0\) and \(\bar{Q}_{0}\ge 0\). Accordingly, there is no endemic equilibrium. Thereby, we complete the proof. \(\square \)

Proof of Theorem 4:

Proof

Direct calculation yields the local stability of equilibria. Below, we mainly prove the global stability of \(\bar{E}_0\) and \(\bar{E}_2\).

When \(\bar{E}_0\) is a unique equilibrium of system (10), according to Poincaré-Bendixson Theorem, there is no periodic orbits in \(\bar{\Gamma }\). The local stability of \(\bar{E}_0\) implies that it is globally asymptotically stable (Brauer and Castillo-Chavez 2012). Thus, Theorem 4 (i) is valid.

Next, Bendixson’s theorem is applied to illustrate the nonexistence of the limit cycle. Let

$$\begin{aligned} \begin{aligned}&\check{P}_1(I_h,I_v)=b\beta _{h}\frac{I_{v}}{N_{h}}(N_{h}-I_{h})-\frac{\delta I_{h}}{1+\alpha I_{h}}-rI_{h}-d_{h}I_{h},\\ {}&\check{Q}_1(I_h,I_v)=b\beta _{v}\frac{I_{h}}{N_{h}}(N_{v}-I_{v})-d_{v}I_{v}. \end{aligned} \end{aligned}$$

One can get

$$\begin{aligned} \begin{aligned}&\frac{\partial \check{P}_1}{\partial I_h}+\frac{\partial \check{Q}_1}{\partial I_v}=-\frac{b\beta _{h}}{N_{h}}I_v-\frac{\delta }{(1+\alpha I_{h})^2}-r-d_{h}-\frac{b\beta _{v}I_{h}}{N_{h}}-d_v<0~in~\bar{\Gamma }. \end{aligned} \end{aligned}$$

This implies that there is no limit cycle in \(\bar{\Gamma }\). When \(\bar{\mathcal {R}}_{0}>1\), \(\bar{E}_2\) is a unique locally asymptotically stable equilibrium of system (10). Accordingly, it must be globally asymptotically stable in \(\bar{\Gamma }\setminus \{\bar{E}_0\}\) (Brauer and Castillo-Chavez 2012). Thus, Theorem 4 (iii) is established. \(\square \)

Proof of Theorem 5:

Proof

System (10) can be written as

$$\begin{aligned} \frac{\text {d}w}{\text {d}t}=\bar{f}(w) \end{aligned}$$

with \(w=(w_{1},w_{2})^{\textrm{T}}=(I_{h},I_{v})^{\textrm{T}}\), and \(\bar{f}=(\bar{f}_{1},\bar{f}_{2})^{\textrm{T}}\) is shown below

$$\begin{aligned} \left\{ \begin{aligned} \bar{f}_{1}&=\bar{\beta _{h}}w_{2}(N_{h}-w_{1})-\frac{\delta w_{1}}{1+\alpha w_{1}}-rw_{1}-d_{h}w_{1},\\ \bar{f}_{2}&=\bar{\beta _{v}}w_{1}(N_{v}-w_{2})-d_{v}w_{2}. \end{aligned}\right. \end{aligned}$$

Select \(\delta \) as the bifurcation parameter. From \(\bar{\mathcal {R}}_{0}=1\), we have \(\delta =\bar{\delta }_{1}\). Let \(\phi =\bar{\delta }_{1}-\delta \). At \(\phi =0\), the Jacobian matrix of system (10) at the DFE \(\bar{E}_{0}\), denoted by \(J(\bar{E}_{0})|_{\phi =0}\), admits a zero eigenvalue and an eigenvalue with negative real part.

The left and right eigenvectors of \(J(\bar{E}_{0})|_{\phi =0}\) related to zero eigenvalue are

$$\begin{aligned} \begin{aligned} p=(p_{1},p_{2})=\left( \frac{\bar{\beta _{v}}N_{v}}{r+d_h+\bar{\delta }_1},1\right) p_{2},~ q=(q_{1},q_{2})^{\textrm{T}} =\left( \frac{d_v}{\bar{\beta _h}N_h},1\right) ^{\textrm{T}}q_{2}, \end{aligned} \end{aligned}$$

respectively, where \(q_{2}>0\) satisfying Theorem 4.1 in Castillo-Chavez and Song (2004). Furthermore, \(p_{2}\) and \(q_{2}\) can be selected to satisfy \(p_{2}q_{2}=\frac{(r+d_h+\bar{\delta }_1)\bar{\beta _h}N_h}{\bar{\beta _{v}}N_vd_v+(r+d_h+\bar{\delta }_1)\bar{\beta _h}N_h} >0\) such that \(p\cdot q=1.\)

In addition,

$$\begin{aligned} \begin{aligned}&\frac{\partial ^{2}\bar{f}_{1}}{\partial w_{1}^{2}}(0,0)=2\alpha \bar{\delta }_1,~\frac{\partial ^{2}\bar{f}_{1}}{\partial w_{1}\partial w_{2}}(0,0)=\frac{\partial ^{2}\bar{f}_{1}}{\partial w_{2}\partial w_{1}}(0,0)=-\bar{\beta _{h}},\\&\frac{\partial ^{2}\bar{f}_{2}}{\partial w_{1}\partial w_{2}}(0,0)=\frac{\partial ^{2}\bar{f}_{2}}{\partial w_{2}\partial w_{1}}(0,0)=-\bar{\beta _{v}}, ~\frac{\partial ^{2}\bar{f}_{1}}{\partial w_{1}\partial \phi }(0,0)=1,\\ \end{aligned} \end{aligned}$$

and remaining derivatives are equal to zero.

Based on Theorem 4.1 in Castillo-Chavez and Song (2004), the coefficients \(\tilde{a}\) and \(\tilde{b}\) are

$$\begin{aligned} \begin{aligned} \tilde{a}&=\sum \limits _{k,i,j=1}^{2}p_{k}q_{i}q_{j}\frac{\partial ^{2}\bar{f}_{k}}{\partial w_{i}\partial w_{j}}(0,0)= \frac{2\bar{\beta _{h}}\bar{\delta }_1 N_{h}d_{v}}{(r+d_h+\bar{\delta }_1)^2}p_2q_2^2(\alpha -\bar{\alpha }_{1}),\\ \tilde{b}&=\sum \limits _{k,i=1}^{2}\bar{p}_{k}\bar{q}_{i} \frac{\partial ^{2}\bar{f}_{k}}{\partial w_{i}\partial \phi }(0,0)= \frac{\bar{\beta _{h}}\bar{\beta _{v}}N_{h}N_{v}}{(r+d_h+\bar{\delta }_1)^2}p_2q_2>0. \end{aligned} \end{aligned}$$

Accordingly, system (10) undergoes, at \(\bar{\mathcal {R}}_{0}=1\), a backward bifurcation as \(\alpha >\bar{\alpha }_{1}\), and a forward bifurcation as \(\alpha <\bar{\alpha }_{1}\). \(\square \)

Proof of Theorem 10:

Direct calculation can obtain the local stability of equilibria. Next, applying geometric singular perturbation theory (Feng et al. 2004; Fenichel 1979), introduce the reduced system corresponding to system (19)

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\text {d}I_{h}}{\text {d}s}=\bar{\beta }_{h}\frac{\bar{\beta }_{v}(I_{h}+\theta R_{h})N_v}{\bar{\beta }_{v}(I_{h}+\theta R_{h})+d_{v}}(N_{h}-I_{h}-R_{h})-\bar{r}I_{h}-\frac{\bar{\delta } I_{h}}{1+\alpha I_{h}}-\bar{d}_h I_{h},\\&\frac{\text {d}R_{h}}{\text {d}s}=\bar{r}I_{h}-\bar{v}R_{h}-\bar{d}_hR_{h}, \end{aligned}\right. \end{aligned}$$
(D1)

where \(\varepsilon =\frac{d_h}{d_v}\)\(s=\varepsilon t\)\(d_h=\varepsilon \bar{d}_h\)\(\frac{b\beta _h}{N_h}=\varepsilon \bar{\beta }_{h}\)\(\delta =\varepsilon \bar{\delta }\)\(v=\varepsilon \bar{v}\)\(r=\varepsilon \bar{r}\),  \(\bar{\beta }_v=\frac{b\beta _v}{N_h}\). Due to the facts that systems (19) and (D1) in this work correspond to systems (58) and (27) in Wang and Zhao (2022), and Wang and Zhao (2022) provides detailed derivation of the dynamics for reduced system (27) that can reveal the dynamics of system (58), we directly apply these results. Specifically, the stability of \(\hat{E}_0=(0,0)^\textrm{T}\) in system (D1) is consistent with that of \(E_0\) in system (19). Hence, the global stability of the DFE \(E_0\) in system (19) is demonstrated by studying the global stability of the DFE \(\hat{E}_0\) in reduced system (D1).

For system (D1), \(\hat{\Gamma }=\{(I_h,R_h)^\textrm{T}\big |0\le I_h\le N_h,~0\le R_h\le N_h\}\) is positively invariant. If \(E_0\) is a unique equilibrium of system (19), then \(\hat{E}_0\) is a unique equilibrium of system (D1) Wang and Zhao (2022). According to Poincaré-Bendixson Theorem, system (D1) admits no periodic orbits in \(\hat{\Gamma }\). Since the local stability of \(E_0\) means the local stability of \(\hat{E}_0\), the local stability of \(\hat{E}_0\) implies that it is globally asymptotically stable in \(\hat{\Gamma }\) (Brauer and Castillo-Chavez 2012). Thus, Theorem 10 is valid.

Proof of Corollary 3:

After some calculations, we obtain the local stability of equilibria. For \(\alpha =0\), similar to the proof of Theorem 10, the global stability of \(E_0\) and \(E_3\) in system (19) is obtained by proving the global stability of \(\hat{E}_0\) and \(\hat{E}_3=(I_{h3},R_{h3})^\textrm{T}\) in reduced system (D1) (Wang and Zhao 2022).

When \(E_0\) is a unique equilibrium of system (19), \(\hat{E}_0\) is a unique equilibrium of system (D1). Similar to the proof of Theorem 4 (i) and Theorem 10 (i), its local stability means its global stability. Thus, Corollary 3 (i) is valid.

In the following, Dulac’s criterion is applied to prove the nonexistence of the limit cycle. Let

$$\begin{aligned} \begin{aligned}&\check{P}_2(I_h,R_h)=\bar{\beta }_{h}\frac{\bar{\beta }_{v}(I_{h}+\theta R_{h})N_v}{\bar{\beta }_{v}(I_{h}+\theta R_{h})+d_{v}}(N_{h}-I_{h}-R_{h})-\bar{r}I_{h}-\bar{\delta } I_{h}-\bar{d}_h I_{h},\\ {}&\check{Q}_2(I_h,R_h)=\bar{r}I_{h}-\bar{v}R_{h}-\bar{d}_hR_{h}, \end{aligned} \end{aligned}$$

and take Dulac function \(\check{D}=\frac{\bar{\beta }_{v}(I_{h}+\theta R_{h})+d_{v}}{I_{h}+\theta R_{h}}\). We have

$$\begin{aligned} \begin{aligned} \frac{\partial (\check{D}\check{P}_2)}{\partial I_h}+\frac{\partial (\check{D}\check{Q}_2)}{\partial I_v}&=-\bar{\beta }_{h}\bar{\beta }_{v}N_v-\bar{\beta }_{v}(\bar{\delta }+\bar{r}+\bar{d}_{h}) -d_{v}(\bar{\delta }+\bar{r}+\bar{d}_{h})\frac{\theta R_h}{(I_{h}+\theta R_{h})^2}\\ {}&\quad -d_{v}(\bar{r}\theta +\bar{v}+\bar{d}_{h})\frac{I_h}{(I_{h}+\theta R_{h})^2} -\bar{\beta }_{v}(\bar{v}+\bar{d}_{h})<0~in~\hat{\Gamma }\backslash \{\hat{E}_0\}. \end{aligned} \end{aligned}$$

This implies that there is no limit cycle in \(\hat{\Gamma }\backslash \{\hat{E}_0\}\). When \(\mathcal {R}_{0}>1\), \(E_3\) is a unique locally asymptotically stable equilibrium of system (19) with \(\alpha =0\). Then \(\hat{E}_3\) is a unique locally asymptotically stable equilibrium of system (D1) with \(\alpha =0\). Hence, \(\hat{E}_3\) must be globally asymptotically stable in \(\hat{\Gamma }\backslash \{\hat{E}_0\}\) (Brauer and Castillo-Chavez 2012). Therefore, Corollary 3 (ii) holds.

The definitions of \(b_{20}\)\(c_{20}\) and \(c_{11}\)

$$\begin{aligned} \begin{aligned}&a^1_1=-\bar{\beta _h}I_v^*-d_h-r-\frac{\delta }{(1+\alpha I_h^*)^2},~ a^1_2=-\bar{\beta _h}I_v^*,~a^1_3=\bar{\beta _h}(N_h-I_h^*-R_h^*),~ a^2_1=r,\\&a^2_2=-(v+d_h),~a^3_1=\bar{\beta _v}(N_v-I_v^*),~a^3_2=\theta \bar{\beta _v}(N_v-I_v^*),~ a^3_3=-\bar{\beta _v}(I_h^*+\theta R_h^*)-d_v,\\&a^1_{11}=\frac{\delta \alpha }{(1+\alpha I_h^*)^3},~a^1_{13}=-\bar{\beta _h},~ a^1_{23}=-\bar{\beta _h},~a^3_{13}=-\bar{\beta _v},~a^3_{23}=-\theta \bar{\beta _v},\\&v_{11}=a^2_2a^3_3,~v_{21}=-a^2_1a^3_3,~v_{31}=-a^3_1a^2_2+a^3_2a^2_1, ~v_{12}=-a^3_3,~v_{22}=0,~v_{32}=\frac{a^3_3(a_{2}^2+a^1_1)}{a^1_3},\\ \end{aligned} \end{aligned}$$
$$\begin{aligned}&v_{13}=(a^1_1+a^3_3)(a^1_1+a^2_2), ~v_{23}=a^2_1(a^1_1+a^2_2),~v_{33}=a^3_1(a^1_1+a^3_3)+a^3_2a^2_1,\\&T_{11}=-\frac{v_{32}v_{23}}{|T|},~T_{21}=\frac{v_{31}v_{23}-v_{21}v_{33}}{|T|}, ~T_{13}=\frac{v_{12}v_{23}}{|T|},~T_{23}=\frac{v_{21}v_{13}-v_{11}v_{23}}{|T|},\\&b_{20}=T_{11}(a^1_{11}v_{11}^2+a^1_{13}v_{11}v_{31}+a^1_{23}v_{21}v_{31}) +T_{13}(a^3_{13}v_{11}v_{31}+a^3_{23}v_{21}v_{31}),\\&c_{20}=T_{21}(a^1_{11}v_{11}^2+a^1_{13}v_{11}v_{31}+a^1_{23}v_{21}v_{31}) +T_{23}(a^3_{13}v_{11}v_{31}+a^3_{23}v_{21}v_{31}),\\&c_{11}=T_{21}(2a^1_{11}v_{11}v_{12}+a^1_{13}(v_{12}v_{31}+v_{11}v_{32}) +a^1_{23}(v_{31}v_{22}+v_{21}v_{32}))\\&\qquad \quad +T_{23}(a^3_{13}(v_{12}v_{31}+v_{11}v_{32})+a^3_{23}(v_{31}v_{22}+v_{21}v_{32}))\\ \end{aligned}$$

with \(|T|=v_{12}(v_{31}v_{23}-v_{21}v_{33})+v_{32}(v_{21}v_{13}-v_{11}v_{23})\).

The normal form of Turing–Hopf bifurcation at \(E_2\)

Using the method in Song et al. (2016), we derive the normal form of Turing–Hopf bifurcation at \(E_2\). We first introduce perturbation vector \(\epsilon =(\epsilon _1,\epsilon _2)\) and make \(\alpha =\alpha ^*+\epsilon _1\) and \(r=r^*+\epsilon _2\). Then system (5) reads as

$$\begin{aligned} \left\{ \begin{aligned} \frac{\partial I_{h}}{\partial t}&=d_1\Delta I_{h}+\bar{\beta _{h}}I_{v}(N_{h}-I_{h}-R_{h}) -\frac{\delta I_{h}}{1+(\alpha ^*+\epsilon _1) I_{h}}\\ {}&\quad -(r^*+\epsilon _2)I_{h}-d_{h}I_{h},&t>0,~x\in \Omega ,\\ \frac{\partial R_{h}}{\partial t}&=d_1\Delta R_{h}+(r^*+\epsilon _2)I_{h}-d_{h}R_{h}-vR_{h},&t>0,~x\in \Omega ,\\ \frac{\partial I_{v}}{\partial t}&=d_{2}\Delta I_{v}+\bar{\beta _{v}}(I_{h}+\theta R_{h})(N_{v}-I_{v}),&t>0,~x\in \Omega ,\\ \frac{\partial I_{h}}{\partial n}&=\frac{\partial R_{h}}{\partial n}=\frac{\partial I_{v}}{\partial n}=0,&x\in \partial \Omega . \end{aligned} \right. \end{aligned}$$
(G2)

Note that \(E_2\) is still the endemic equilibrium of system (G2).

Taking the transformation \(\xi _1=I_h-I_{h2}\), \(\xi _2=R_h-R_{h2}\), \(\xi _3=I_v-I_{v2}\), one has

$$\begin{aligned} \left\{ \begin{aligned} \frac{\partial \xi _1}{\partial t}&=d_1\Delta \xi _1+f_1(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2}),&t>0,~x\in \Omega ,\\ \frac{\partial \xi _{2}}{\partial t}&=d_1\Delta \xi _{2}+f_2(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2}),&t>0,~x\in \Omega ,\\ \frac{\partial \xi _{3}}{\partial t}&=d_{2}\Delta \xi _{3}+f_3(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2}),&t>0,~x\in \Omega ,\\ \frac{\partial \xi _{1}}{\partial n}&=\frac{\partial \xi _{2}}{\partial n}=\frac{\partial \xi _{3}}{\partial n}=0,&t>0,~x\in \partial \Omega , \end{aligned} \right. \end{aligned}$$
(G3)

with

$$\begin{aligned} \begin{aligned} f_1(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2})&=\bar{\beta _{h}}(\xi _3+I_{v2})(N_{h}-\xi _1-I_{h2}-\xi _2-R_{h2}) \\ {}&\quad -\frac{\delta (\xi _1+I_{h2})}{1+(\alpha ^*+\epsilon _1) (\xi _1+I_{h2})}\\ {}&\quad -(r^*+\epsilon _2)(\xi _1+I_{h2}) -d_{h}(\xi _1+I_{h2}),\\ f_2(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2})&= (r^*+\epsilon _2)(\xi _1+I_{h2})-(d_{h}+v)(\xi _2+R_{h2}),\\ f_3(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2})&=\bar{\beta _{v}}\left( \xi _1+I_{h2}+\theta (\xi _2+R_{h2})\right) (N_{v}-\xi _3-I_{v2})\\ {}&\quad -d_v(\xi _3+I_{v2}). \end{aligned} \end{aligned}$$

Letting \(U=(\xi _1,\xi _2,\xi _3)^{\textrm{T}}\) and

$$\begin{aligned} L(\epsilon ) = \left( \begin{array}{ccc} -\bar{\beta _{h}}I_{v2}-\frac{\delta }{(1+(\alpha ^*+\epsilon _1) I_{h2})^2}-r^* -\epsilon _2-d_h &{} -\bar{\beta _{h}}I_{v2} &{} \bar{\beta _{h}}m_5\\ r^*+\epsilon _2 &{} -v-d_h &{}0 \\ \bar{\beta _{v}}(N_v-I_{v2}) &{} \theta \bar{\beta _{v}}(N_v-I_{v2}) &{} -m_3 \\ \end{array} \right) , \end{aligned}$$

system (G3) takes the following form

$$\begin{aligned} \begin{aligned}&\frac{\partial U}{\partial t}=\mathcal {L}U+\tilde{f}(U,\epsilon ),~t>0,~x\in \Omega , \end{aligned} \end{aligned}$$
(G4)

where

$$\begin{aligned} \mathcal {L}U = \left( \begin{array}{ccc} d_1\Delta &{} 0 &{} 0\\ 0 &{} d_1\Delta &{}0 \\ 0 &{} 0 &{} d_2\Delta \\ \end{array} \right) U+L(0)U, \end{aligned}$$

and

$$\begin{aligned} \begin{array}{lll} \tilde{f}(U,\epsilon ) &{}= L(\epsilon )U-L(0)U+f(U,\epsilon ) \\ {} &{}= \sum \limits _{j_1+j_2+j_3+j_4+j_5\ge 2}\frac{1}{j_1!j_2!j_3!j_4!j_5!} f_{j_1j_2j_3j_4j_5}\xi _1^{j_1}\xi _2^{j_2}\xi _3^{j_3} \epsilon _1^{j_4}\epsilon _2^{j_5} \end{array} \end{aligned}$$

with

$$\begin{aligned} \begin{array}{llll} f(U,\epsilon ) &{}=&{} \left( \begin{array}{c} f^{(1)}(U,\epsilon ) \\ f^{(2)}(U,\epsilon ) \\ f^{(3)}(U,\epsilon ) \\ \end{array} \right) , \end{array} \end{aligned}$$

in which

$$\begin{aligned} \begin{aligned} f^{(1)}(U,\epsilon )&=f_1(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2})+\bar{\beta _{h}}I_{v2}\xi _2 -\bar{\beta _{h}}(N_h-I_{h2}-R_{h2})\xi _3\\&\quad +\left( \bar{\beta _{h}}I_{v2}+\frac{\delta }{(1+(\alpha ^*+\epsilon _1) I_{h2})^2}+r^*+\epsilon _2+d_h\right) \xi _1,\\ f^{(2)}(U,\epsilon )&=0,\\ f^{(3)}(U,\epsilon )&=f_3(\xi _1+I_{h2},\xi _2+R_{h2},\xi _3+I_{v2}) -\bar{\beta _{v}}(N_v-I_{v2})\xi _1-\theta \bar{\beta _{v}}(N_v-I_{v2})\xi _2 \\&\quad +\left( \bar{\beta _{v}}(I_{h2}+\theta R_{h2})+d_v\right) \xi _3. \end{aligned} \end{aligned}$$

For \(i\in \mathbb {N}_0\), denote

$$\begin{aligned} \mathcal {M}_i = \left( \begin{array}{ccc} -d_1u_{i}-\bar{\beta _h}I_{v2}-d_h-r^*-\frac{\delta }{(1+\alpha ^* I_{h2})^2} &{} -\bar{\beta _h}I_{v2} &{} \bar{\beta _h}m_5 \\ r^* &{} -d_1u_{i}-(v+d_h) &{} 0 \\ \bar{\beta _v}(N_v-I_{v2}) &{} \theta \bar{\beta _v}(N_v-I_{v2}) &{} -d_2u_{i}-m_3 \\ \end{array} \right) . \end{aligned}$$

For any two vectors \(\varphi \)\(\psi \in \mathbb {R}^3\), define the product as \(\langle \psi ^\textrm{T},\varphi \rangle =\psi ^\textrm{T}\varphi \). Let

$$\begin{aligned} \begin{aligned} \Phi _0=(\varphi _0,\overline{\varphi }_0),~\Phi _{i^*}=\varphi _{i^*},~ \Psi _0=col(\psi ^\textrm{T}_0, \overline{\psi }^\textrm{T}_0), ~\Psi _{i^*}=\psi ^\textrm{T}_{i^*}, \end{aligned} \end{aligned}$$

where \(\varphi _0=(\varphi _{01},\varphi _{02},\varphi _{03})^\textrm{T}\in \mathbb {C}^3\)\(\varphi _{i^*}=(\varphi _{i^*1},\varphi _{i^*2},\varphi _{i^*3})^\textrm{T}\in \mathbb {R}^3\) are the eigenvectors relevant to the eigenvalues \(i\omega _0\) and 0, respectively; \(\psi _0=(\psi _{01},\psi _{02},\psi _{03})^\textrm{T}\in \mathbb {C}^3\)\(\psi _{i^*}=(\psi _{i^*1},\psi _{i^*2},\psi _{i^*3})^\textrm{T}\in \mathbb {R}^3\) are the corresponding adjoint eigenvectors. After some computations, acquire

$$\begin{aligned} \begin{aligned} \varphi _{01}&=1,~\varphi _{02}=\frac{r^*}{i\omega _0+d_h+v},~ \psi _{01}=\frac{1}{c_1}, ~\psi _{03}=\frac{\bar{\beta _h}m_5}{c_1(m_3-i\omega _0)},\\ \varphi _{03}&=\frac{r^*\bar{\beta _h}I_{v2}}{\bar{\beta _h}m_5(i\omega _0+d_h+v)} +\frac{(\bar{\beta _h}I_{v2}+i\omega _0+d_h+r^*)(1+\alpha ^*I_{h2})^2 +\delta }{\bar{\beta _h}m_5(1+\alpha ^*I_{h2})^2},\\ \end{aligned} \end{aligned}$$
(G5)
$$\begin{aligned} \psi _{02}&=\frac{1}{c_1r^*}\left( \bar{\beta _h}I_{v2}+d_h+r^*+\frac{\delta }{(1+\alpha ^* I_{h2})^2}-i\omega _0-\frac{\bar{\beta _v}\bar{\beta _h}m_5(N_v-I_{v2})}{m_3-i\omega _0}\right) ,~\\ \varphi _{i^*1}&=1,~\varphi _{i^*2}=\frac{r^*}{d_1u_{i^*}+d_h+v}, ~\psi _{i^*1}=\frac{1}{c_2},~\psi _{i^*3}=\frac{\bar{\beta _h}m_5}{c_2(d_2u_{i^*}+m_3)},\\ \varphi _{i^*3}&=\frac{r^*\bar{\beta _h}I_{v2}}{\bar{\beta _h}m_5(d_1u_{i^*}+d_h+v)} +\frac{(\bar{\beta _h}I_{v2}+d_1u_{i^*}+d_h+r^*)(1+\alpha ^*I_{h2})^2 +\delta }{\bar{\beta _h}m_5(1+\alpha ^*I_{h2})^2},\\ \psi _{i^*2}&=\frac{1}{c_2r^*}\left( d_1u_{i^*}+\bar{\beta _h}I_{v2}+d_h+r^*+\frac{\delta }{(1+\alpha ^* I_{h2})^2}-\frac{\bar{\beta _v}\bar{\beta _h}m_5(N_v-I_{v2})}{d_2u_{i^*}+m_3}\right) ,~ \end{aligned}$$

where \(c_1\), \(c_2\) satisfy \(\langle \Psi _0,\Phi _0\rangle =I_2\) and \(\langle \Psi _{i^*},\Phi _{i^*}\rangle =1\), respectively, in which \(I_2\) is \(2\times 2\) identity matrix.

Carrying out Taylor expansion on \(f(U,\varepsilon )\), the coefficients of second and third order terms are

$$\begin{aligned} \begin{array}{lll} f_{20000} = \left( \begin{array}{c} \frac{2\delta \alpha ^*}{(1+\alpha ^*I_{h2})^3} \\ 0 \\ 0 \\ \end{array} \right) ,~ f_{10100}= \left( \begin{array}{c} -\bar{\beta _h} \\ 0 \\ -\bar{\beta _v} \\ \end{array} \right) ,~\\ f_{01100}= \left( \begin{array}{c} -\bar{\beta _h} \\ 0 \\ -\theta \bar{\beta _v} \\ \end{array} \right) ,~ f_{30000} = \left( \begin{array}{c} \frac{-6\delta (\alpha ^*)^2}{(1+\alpha ^*I_{h2})^4} \\ 0 \\ 0 \\ \end{array} \right) ,~ \end{array} \end{aligned}$$

and all other coefficients equal \((0,0,0)^\textrm{T}\). In light of the results in Song et al. (2016), acquire the following third-order truncated normal form

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\text {d}z_1}{\text {d}t}= i\omega _0z_1+(B_{11}\epsilon _1+B_{21}\epsilon _2)z_1+B_{210}z_1^2z_2+B_{102}z_1z_3^2,\\&\frac{\text {d}z_2}{\text {d}t}= -i\omega _0z_2+(\bar{B}_{11}\epsilon _1+\bar{B}_{21}\epsilon _2)z_2+\bar{B}_{210}z_1z_2^2+\bar{B}_{102}z_2z_3^2,\\&\frac{\text {d}z_{3}}{\text {d}t}=(B_{13}\epsilon _1+B_{23}\epsilon _2)z_3+B_{111}z_1z_2z_3+B_{003}z_3^3,\\ \end{aligned}\right. \end{aligned}$$
(G6)

where

$$\begin{aligned}&B_{210}=C_{210}+\frac{3}{2}(D_{210}+E_{210}), ~B_{102}=C_{102}+\frac{3}{2}(D_{102}+E_{102}),\\&B_{111}=C_{111}+\frac{3}{2}(D_{111}+E_{111}),~ B_{003}=C_{003}+\frac{3}{2}(D_{003}+E_{003}), \end{aligned}$$

with

$$\begin{aligned} C_{210}= & {} \frac{1}{6l\pi }\psi _0^\textrm{T}A_{210}, ~C_{102}=\frac{1}{6l\pi }\psi _0^\textrm{T}A_{102}, ~C_{111}=\frac{1}{6l\pi }\psi _{i^*}^\textrm{T}A_{111},~ C_{003}=\frac{1}{4l\pi }\psi _{i^*}^\textrm{T}A_{003},\\ D_{210}= & {} \frac{1}{6l\pi \omega _0i}\left( -(\psi _0^\textrm{T}A_{200})(\psi _0^\textrm{T}A_{110})+ |\psi _0^\textrm{T}A_{110}|^2+\frac{2}{3}|\psi _0^\textrm{T}A_{020}|^2\right) ,\\ D_{102}= & {} \frac{1}{6l\pi \omega _0i}\left( -2(\psi _0^\textrm{T}A_{200})(\psi _0^\textrm{T}A_{002})+ (\psi _0^\textrm{T}A_{110})(\overline{\psi }_0^\textrm{T}A_{002})+ 2(\psi _0^\textrm{T}A_{002})(\psi _{i^*}^\textrm{T}A_{101})\right) ,\\ D_{111}= & {} -\frac{1}{3l\pi \omega _0}Im((\psi _{i^*}^\textrm{T}A_{101})(\psi _0^\textrm{T}A_{110})), ~D_{003}=-\frac{1}{3l\pi \omega _0}Im((\psi _{i^*}^\textrm{T}A_{101})(\psi _0^\textrm{T}A_{002})), \end{aligned}$$
$$\begin{aligned} E_{210}&=\frac{1}{3\sqrt{l\pi }}\psi _0^\textrm{T}\left( (f_{20000}\varphi _{01}+ f_{11000}\varphi _{02}+f_{10100}\varphi _{03})h_{0110}^{(1)}\right. \\&\quad \left. +(f_{11000}\varphi _{01}+ f_{02000}\varphi _{02}+f_{01100}\varphi _{03})h_{0110}^{(2)}\right. \\&\quad \left. +(f_{10100}\varphi _{01}+f_{01100}\varphi _{02}+f_{00200}\varphi _{03})h_{0110}^{(3)}\right. \\&\quad \left. +(f_{20000}\overline{\varphi }_{01}+ f_{11000}\overline{\varphi }_{02}+f_{10100}\overline{\varphi }_{03})h_{0200}^{(1)}\right. \\&\quad \left. +(f_{11000}\overline{\varphi }_{01}+ f_{02000}\overline{\varphi }_{02}+f_{01100}\overline{\varphi }_{03})h_{0200}^{(2)}\right. \\&\quad \left. +(f_{10100}\overline{\varphi }_{01}+ f_{01100}\overline{\varphi }_{02}+f_{00200}\overline{\varphi }_{03})h_{0200}^{(3)}\right) , \\ E_{102}&=\frac{1}{3\sqrt{l\pi }}\psi _0^\textrm{T}\left( (f_{20000}\varphi _{01}+ f_{11000}\varphi _{02}+f_{10100}\varphi _{03})h_{0002}^{(1)}\right. \\&\quad \left. +(f_{11000}\varphi _{01}+ f_{02000}\varphi _{02}+f_{01100}\varphi _{03})h_{0002}^{(2)}\right. \\&\quad \left. +(f_{10100}\varphi _{01}+f_{01100}\varphi _{02}+f_{00200}\varphi _{03})h_{0002}^{(3)}\right. \\&\quad \left. +(f_{20000}\varphi _{i^*1}+ f_{11000}\varphi _{i^*2}+f_{10100}\varphi _{i^*3})h_{i^*101}^{(1)}\right. \\&\quad \left. +(f_{11000}\varphi _{i^*1}+ f_{02000}\varphi _{i^*2}+f_{01100}\varphi _{i^*3})h_{i^*101}^{(2)}\right. \\&\quad \left. +(f_{10100}\varphi _{i^*1}+ f_{01100}\varphi _{i^*2}+f_{00200}\varphi _{i^*3})h_{i^*101}^{(3)}\right) , \\ E_{111}&=\frac{1}{3\sqrt{l\pi }}\psi _{i^*}^\textrm{T}\left( (f_{20000}\varphi _{01}+ f_{11000}\varphi _{02}+f_{10100}\varphi _{03})h_{i^*011}^{(1)}\right. \\&\quad \left. +(f_{11000}\varphi _{01}+ f_{02000}\varphi _{02}+f_{01100}\varphi _{03})h_{i^*011}^{(2)}\right. \\&\quad \left. +(f_{10100}\varphi _{01}+f_{01100}\varphi _{02}+f_{00200}\varphi _{03})h_{i^*011}^{(3)}\right. \\&\quad \left. +(f_{20000}\overline{\varphi }_{01}+ f_{11000}\overline{\varphi }_{02}+f_{10100}\overline{\varphi }_{03})h_{i^*101}^{(1)}\right. \\&\quad \left. +(f_{11000}\overline{\varphi }_{01}+ f_{02000}\overline{\varphi }_{02}+f_{01100}\overline{\varphi }_{03})h_{i^*101}^{(2)}\right. \\&\quad \left. +(f_{10100}\overline{\varphi }_{01}+ f_{01100}\overline{\varphi }_{02}+f_{00200}\overline{\varphi }_{03})h_{i^*101}^{(3)}\right) \\&\quad +\psi _{i^*}^\textrm{T}(f_{20000}\varphi _{i^*1}+ f_{11000}\varphi _{i^*2}+f_{10100}\varphi _{i^*3}) \left( \frac{1}{3\sqrt{l\pi }}h_{0110}^{(1)}+ \frac{1}{3\sqrt{2l\pi }}h_{(2i^*)110}^{(1)}\right) \\&\quad +\psi _{i^*}^\textrm{T}(f_{1100}\varphi _{i^*1}+ f_{02000}\varphi _{i^*2}+f_{01100}\varphi _{i^*3}) \left( \frac{1}{3\sqrt{l\pi }}h_{0110}^{(2)}+ \frac{1}{3\sqrt{2l\pi }}h_{(2i^*)110}^{(2)}\right) \\&\quad +\psi _{i^*}^\textrm{T}(f_{10100}\varphi _{i^*1}+ f_{01100}\varphi _{i^*2}+f_{00200}\varphi _{i^*3}) \left( \frac{1}{3\sqrt{l\pi }}h_{0110}^{(3)}+ \frac{1}{3\sqrt{2l\pi }}h_{(2i^*)110}^{(3)}\right) , \\ \end{aligned}$$
$$\begin{aligned} \begin{aligned} E_{003}&=\psi _{i^*}^\textrm{T} (f_{20000}\varphi _{i^*1}+ f_{11000}\varphi _{i^*2}+f_{10100}\varphi _{i^*3}) \left( \frac{1}{3\sqrt{l\pi }}h_{0002}^{(1)}+ \frac{1}{3\sqrt{2l\pi }}h_{(2i^*)002}^{(1)}\right) \\&\quad +\psi _{i^*}^\textrm{T}(f_{11000}\varphi _{i^*1}+ f_{02000}\varphi _{i^*2}+f_{01100}\varphi _{i^*3}) \left( \frac{1}{3\sqrt{l\pi }}h_{0002}^{(2)}+ \frac{1}{3\sqrt{2l\pi }}h_{(2i^*)002}^{(2)}\right) \\&\quad +\psi _{i^*}^\textrm{T}(f_{10100}\varphi _{i^*1}+ f_{01100}\varphi _{i^*2}+f_{00200}\varphi _{i^*3}) \left( \frac{1}{3\sqrt{l\pi }}h_{0002}^{(3)}+\frac{1}{3\sqrt{2l\pi }}h_{(2i^*)002}^{(3)}\right) , \end{aligned} \end{aligned}$$

with

$$\begin{aligned} h_{0200}= & {} \frac{1}{\sqrt{l\pi }}(2\omega _0i\mathcal {I}-\mathcal {M}_0)^{-1} (A_{200}-\psi _0^\textrm{T}A_{200}\varphi _0-\overline{\psi }_0^\textrm{T}A_{200} \overline{\varphi }_0), \\ h_{0020}= & {} \frac{1}{\sqrt{l\pi }}(-2\omega _0i\mathcal {I}-\mathcal {M}_0)^{-1} (A_{020}-\psi _0^\textrm{T}A_{020}\varphi _0-\overline{\psi }_0^\textrm{T}A_{020} \overline{\varphi }_0), \\ h_{0002}= & {} \frac{1}{\sqrt{l\pi }}(-\mathcal {M}_0)^{-1} (A_{002}-\psi _0^\textrm{T}A_{002}\varphi _0-\overline{\psi }_0^\textrm{T}A_{002} \overline{\varphi }_0), \\ h_{0110}= & {} \frac{1}{\sqrt{l\pi }}(-\mathcal {M}_0)^{-1} (A_{110}-\psi _0^\textrm{T}A_{110}\varphi _0-\overline{\psi }_0^\textrm{T}A_{110} \overline{\varphi }_0), \\ h_{i^*101}= & {} \frac{1}{\sqrt{l\pi }}(i\omega _0\mathcal {I}-\mathcal {M}_{i^*})^{-1} (A_{101}-\psi _{i^*}^\textrm{T}A_{101}\varphi _{i^*}), \\ h_{i^*011}= & {} \frac{1}{\sqrt{l\pi }}(-i\omega _0\mathcal {I}-\mathcal {M}_{i^*})^{-1} (A_{011}-\psi _{i^*}^\textrm{T}A_{011}\varphi _{i^*}),\\ h_{(2i^*)002}= & {} \frac{1}{\sqrt{2 l\pi }}(-\mathcal {M}_{2i^*})^{-1} A_{002},~h_{(2i^*)110}=(0,0,0)^\textrm{T}. \end{aligned}$$

Moreover,

$$\begin{aligned} A_{200}&=f_{20000}\varphi _{01}^2+2f_{11000}\varphi _{01}\varphi _{02} +2f_{10100}\varphi _{01}\varphi _{03}+f_{02000}\varphi _{02}^2\\&\quad + 2f_{01100}\varphi _{02}\varphi _{03}+f_{00200}\varphi _{03}^2=\overline{A}_{020}, \\ A_{002}&=f_{20000}\varphi _{i^*1}^2+2f_{11000}\varphi _{i^*1}\varphi _{i^*2} +2f_{10100}\varphi _{i^*1}\varphi _{i^*3}+f_{02000}\varphi _{i^*2}^2\\&\quad + 2f_{01100}\varphi _{i^*2}\varphi _{i^*3}+f_{00200}\varphi _{i^*3}^2, \\ A_{110}&=2(f_{20000}|\varphi _{01}|^2+2f_{11000}Re(\varphi _{01}\overline{\varphi }_{02}) +2f_{10100}Re(\varphi _{01}\overline{\varphi }_{03}) +f_{02000}|\varphi _{02}|^2\\&\quad + 2f_{01100}Re(\varphi _{02}\overline{\varphi }_{03})+f_{00200}|\varphi _{03}|^2), \\ A_{101}&=2\left( f_{20000}\varphi _{i^*1}\varphi _{01} +f_{11000}(\varphi _{i^*2}\varphi _{01}+\varphi _{i^*1}\varphi _{02}) +f_{10100}(\varphi _{i^*3}\varphi _{01}+\varphi _{i^*1}\varphi _{03})\right. \\&\quad \left. +f_{02000}\varphi _{i^*2}\varphi _{02} +f_{01100}(\varphi _{i^*3}\varphi _{02}+\varphi _{i^*2}\varphi _{03}) +f_{00200}\varphi _{i^*3}\varphi _{03}\right) =\overline{A}_{011}, \end{aligned}$$

and

$$\begin{aligned} A_{210}= & {} 3\left( f_{30000}|\varphi _{01}|^2\varphi _{01}+ f_{03000}|\varphi _{02}|^2\varphi _{02}+f_{00300}|\varphi _{03}|^2\varphi _{03} \right. \\{} & {} \quad \left. +f_{21000}(2|\varphi _{01}|^2\varphi _{02}+\varphi _{01}^2\overline{\varphi }_{02}) +f_{20100}(2|\varphi _{01}|^2\varphi _{03}+\varphi _{01}^2\overline{\varphi }_{03}) \right. \\{} & {} \quad \left. +f_{12000}(2\varphi _{01}|\varphi _{02}|^2+\overline{\varphi }_{01}\varphi _{02}^2) +f_{10200}(2\varphi _{01}|\varphi _{03}|^2+\overline{\varphi }_{01}\varphi _{03}^2) \right. \\{} & {} \quad \left. +f_{02100}(2|\varphi _{02}|^2\varphi _{03}+\varphi _{02}^2\overline{\varphi }_{03}) +f_{01200}(2\varphi _{02}|\varphi _{03}|^2+\overline{\varphi }_{02}\varphi _{03}^2) \right. \\{} & {} \quad \left. +2f_{11100}(\overline{\varphi }_{01}\varphi _{02}\varphi _{03}+ \varphi _{01}\overline{\varphi }_{02}\varphi _{03}+\varphi _{01}\varphi _{02}\overline{\varphi }_{03})\right) , \\ A_{102}= & {} 3\left( f_{30000}\varphi _{01}\varphi _{i^*1}^2+ f_{03000}\varphi _{02}\varphi _{i^*2}^2+f_{00300}\varphi _{03}\varphi _{i^*3}^2 \right. \\{} & {} \quad \left. +f_{21000}(2\varphi _{01}\varphi _{i^*1}\varphi _{02}+\varphi _{i^*1}^2\varphi _{02}) +f_{20100}(2\varphi _{01}\varphi _{i^*1}\varphi _{03}+\varphi _{i^*1}^2\varphi _{03}) \right. \\{} & {} \quad \left. +f_{12000}(2\varphi _{i^*1}\varphi _{02}\varphi _{i^*2}+\varphi _{01}\varphi _{i^*2}^2) +f_{10200}(2\varphi _{i^*1}\varphi _{03}\varphi _{i^*3}+\varphi _{01}\varphi _{i^*3}^2) \right. \\{} & {} \quad \left. +f_{02100}(2\varphi _{02}\varphi _{i^*2}\varphi _{i^*3}+\varphi _{i^*2}^2\varphi _{03}) +f_{01200}(2\varphi _{i^*2}\varphi _{03}\varphi _{i^*3}+\varphi _{02}\varphi _{i^*3}^2) \right. \\{} & {} \quad \left. +2f_{11100}(\varphi _{01}\varphi _{i^*2}\varphi _{i^*3}+ \varphi _{i^*1}\varphi _{02}\varphi _{i^*3}+\varphi _{i^*1}\varphi _{i^*2}\varphi _{03})\right) , \\ \end{aligned}$$
Fig. 14
figure 14

When \((\epsilon _1,\epsilon _2)= (8.0559\times 10^{-4},5.2207\times 10^{-5})\in \)  II, there are a stable \(E_0\) and a stable spatially homogeneous periodic solution

Fig. 15
figure 15

When \((\epsilon _1,\epsilon _2)= (-7.7102\times 10^{-4},-7.27\times 10^{-5})\in \) IV, system (5) has a stable \(E_0\) and a pair of stable spatially inhomogeneous periodic solutions

Fig. 16
figure 16

When \((\epsilon _1,\epsilon _2) =(-8.9791\times 10^{-4},-5.17\times 10^{-5})\in \) VI, \(E_0\) and spatial inhomogeneous steady states are stable

$$\begin{aligned} A_{003}= & {} f_{30000}\varphi _{i^*1}^3+ f_{03000}\varphi _{i^*2}^3+f_{00300}\varphi _{i^*3}^3 +3f_{21000}\varphi _{i^*1}^2\varphi _{i^*2} +3f_{20100}\varphi _{i^*1}^2\varphi _{i^*3}\\{} & {} \quad +3f_{12000}\varphi _{i^*1}\varphi _{i^*2}^2 +3f_{10200}\varphi _{i^*1}\varphi _{i^*3}^2+3f_{02100}\varphi _{i^*2}^2\varphi _{i^*3} \\{} & {} \quad +3f_{01200}\varphi _{i^*2}\varphi _{i^*3}^2 +6f_{11100}\varphi _{i^*1}\varphi _{i^*2}\varphi _{i^*3}, \\ A_{111}= & {} 6\left( f_{30000}|\varphi _{01}|^2\varphi _{i^*1}+ f_{03000}|\varphi _{02}|^2\varphi _{i^*2}+f_{00300}|\varphi _{03}|^2\varphi _{i^*3} \right. \\{} & {} \quad \left. +f_{21000}(2Re(\varphi _{01}\overline{\varphi }_{02})\varphi _{i^*1} +|\varphi _{01}|^2\varphi _{i^*2}) \right. \\{} & {} \quad \left. +f_{20100}(2Re(\varphi _{01}\overline{\varphi }_{03})\varphi _{i^*1} +|\varphi _{01}|^2\varphi _{i^*3}) \right. \\{} & {} \quad \left. +f_{12000}(2Re(\varphi _{01}\overline{\varphi }_{02})\varphi _{i^*2} +|\varphi _{02}|^2\varphi _{i^*1}) \right. \\{} & {} \quad \left. +f_{10200}(2Re(\varphi _{01}\overline{\varphi }_{03})\varphi _{i^*3} +|\varphi _{03}|^2\varphi _{i^*1}) \right. \\{} & {} \quad \left. +f_{02100}(2Re(\varphi _{02}\overline{\varphi }_{03})\varphi _{i^*2} +|\varphi _{02}|^2\varphi _{i^*3}) \right. \\{} & {} \quad \left. +f_{01200}(2Re(\varphi _{02}\overline{\varphi }_{03})\varphi _{i^*3} +|\varphi _{03}|^2\varphi _{i^*2}) \right. \\{} & {} \quad \left. +2f_{11100}(Re(\varphi _{01}\overline{\varphi }_{02})\varphi _{i^*3} +Re(\varphi _{01}\overline{\varphi }_{03})\varphi _{i^*2} +Re(\varphi _{02}\overline{\varphi }_{03})\varphi _{i^*1})\right) . \end{aligned}$$

In addition,

$$\begin{aligned} \begin{aligned}&B_{11}=\psi _0^\textrm{T}L_{1}^{(1,0)}(\varphi _0), ~B_{21}=\psi _0^\textrm{T}L_{1}^{(0,1)}(\varphi _0), \\ {}&B_{13}=\psi _{i^*}^\textrm{T}L_{1}^{(1,0)}(\varphi _{i^*}),~ B_{23}=\psi _{i^*}^\textrm{T}L_{1}^{(0,1)}(\varphi _{i^*}), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} L_1^{(1,0)} = \left( \begin{array}{ccc} \frac{2\delta I_{h2}}{(1+\alpha ^*I_{h2})^3} &{} 0 &{} 0\\ 0 &{} 0 &{}0 \\ 0 &{} 0 &{} 0 \\ \end{array} \right) ,~ L_1^{(0,1)} = \left( \begin{array}{ccc} -1 &{} 0 &{} 0\\ 1 &{} 0 &{}0 \\ 0 &{} 0 &{} 0 \\ \end{array} \right) . \end{aligned}$$

Multi-stability of system (5) in regions II, IV and VI:

The part is devoted to presenting dynamics of system (5) in regions II, IV and VI. If \((\epsilon _1,\epsilon _2)\in \) II, then system (33) admits an unstable equilibrium \(J_0\) and a stable equilibrium \(J_1\). Correspondingly, when the parameter vector \((\epsilon _1,\epsilon _2)\) passes through curve \(F_0\) from I to II, the stability of \(E_2\) for system (5) changes and a stable spatially homogeneous periodic solution appears. This indicates that system (5) presents periodic pattern for appropriate initial value. In the case, malaria is mainly manifested as disappearance or periodic outbreak (see Fig. 14).

When \((\epsilon _1,\epsilon _2)\in \) IV, system (33) admits four unstable equilibria \(J_0\), \(J_1\), \(J_2^\pm \), and a pair of stable equilibria \(J_3^\pm \). Accordingly, as the parameters \(\epsilon _1\)\(\epsilon _2\) pass through curve \(K_1\) from III to IV, a pair of stable spatially inhomogeneous periodic solutions emerge, and the spatially homogeneous periodic solution becomes unstable at the same time. Besides, the stability of \(E_0\) and \(E_2\) is same as that in II. This concludes that system (5) exhibits tristability and spatiotemporal patterns with appropriate initial conditions shown in Fig. 15.

When \((\epsilon _1,\epsilon _2)\in \) VI, system (33) admits a unstable equilibria \(J_0\), and a pair of stable equilibria \(J_2^\pm \). Then, as the parameter vector \((\epsilon _1,\epsilon _2)\) passes through curve \(K_2\) and moves to VI, the stable spatially inhomogeneous periodic solution disappears. There are a pair of stable spatial inhomogeneous steady states. Besides, the stability of \(E_0\) and \(E_2\) is same as that in II. In this case, system (5) also exhibits tristability (see Fig. 16).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, H. & Wang, H. The role of natural recovery category in malaria dynamics under saturated treatment. J. Math. Biol. 88, 33 (2024). https://doi.org/10.1007/s00285-024-02051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-024-02051-6

Keywords

Mathematics Subject Classification

Navigation