Skip to main content

Advertisement

Log in

A reaction–diffusion model of spatial propagation of A\(\beta \) oligomers in early stage Alzheimer’s disease

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The misconformation and aggregation of the protein Amyloid-Beta (A\(\beta \)) is a key event in the propagation of Alzheimer’s Disease (AD). Different types of assemblies are identified, with long fibrils and plaques deposing during the late stages of AD. In the earlier stages, the disease spread is driven by the formation and the spatial propagation of small amorphous assemblies called oligomers. We propose a model dedicated to studying those early stages, in the vicinity of a few neurons and after a polymer seed has been formed. We build a reaction–diffusion model, with a Becker–Döring-like system that includes fragmentation and size-dependent diffusion. We hereby establish the theoretical framework necessary for the proper use of this model, by proving the existence of solutions using a fixed point method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrade-Restrepo M, Lemarre P, Pujo-Menjouet L, Tine LM, Ciuperca SI (2020) Modeling the spatial propagation of A\(\beta \) oligomers in Alzheimer’s Disease. In: ESAIM: ProcS, numerical and mathematical modeling for biological and medical applications: deterministic,probabilistic and statistic description, EDP Sciences, vol 67, pp 30–45. https://doi.org/10.1051/proc/202067003

  • Bertsch M, Franchi B, Marcello N, Tesi MC, Tosin A (2016) Alzheimer’s disease: a mathematical model for onset and progression. Math Med Biol: J IMA 34(2):193–214

    MathSciNet  MATH  Google Scholar 

  • Bertsch M, Franchi B, Tesi MC, Tosin A (2017) Microscopic and macroscopic models for the onset and progression of Alzheimer’s disease. J Phys A: Math Theor 50(41):414003

    Article  MathSciNet  Google Scholar 

  • Carbonell F, Iturria-Medina Y, Evans AC (2018) Mathematical modeling of protein misfolding mechanisms in neurological diseases: a historical overview. Front Neurol 9:37

    Article  Google Scholar 

  • Ciuperca IS, Dumont M, Lakmeche A, Mazzocco P, Pujo-Menjouet L, Rezaei H, Tine LM (2018) Alzheimer’s disease and prion: analysis of an in vitro mathematical model. Discrete Contin Dyn Syst-Ser B

  • Čižas P, Jekabsone A, Borutaite V, Morkūniene R (2011) Prevention of amyloid-beta oligomer-induced neuronal death by EGTA, estradiol, and endocytosis inhibitor. Medicina 47(2):15

    Article  Google Scholar 

  • Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TP (2013) Proliferation of Amyloid-\(\beta \)42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci 110(24):9758–9763

    Article  Google Scholar 

  • Doumic M, Goudon T, Lepoutre T (2009) Scaling limit of a discrete prion dynamics model. Commun Math Sci 7(4):839–865

    Article  MathSciNet  Google Scholar 

  • Eigen M (1996) Prionics or the kinetic basis of prion diseases. Biophys Chem 63(1):A1–A18

    Article  Google Scholar 

  • Eleuteri S, Di Giovanni S, Rockenstein E, Mante M, Adame A, Trejo M, Wrasidlo W, Wu F, Fraering PC, Masliah E et al (2015) Blocking A\(\beta \) seeding-mediated aggregation and toxicity in an animal model of Alzheimer’s Disease: A novel therapeutic strategy for neurodegeneration. Neurobiol Dis 74:144

    Article  Google Scholar 

  • Elliott C, Rojo AI, Ribe E, Broadstock M, Xia W, Morin P, Semenov M, Baillie G, Cuadrado A, Al-Shawi R et al (2018) A role for APP in Wnt signalling links synapse loss with \(\beta \)-amyloid production. Transl Psychiatry 8(1):179

    Article  Google Scholar 

  • Greer ML, Pujo-Menjouet L, Webb GF (2006) A mathematical analysis of the dynamics of prion proliferation. J Theor Biol 242(3):598–606

    Article  MathSciNet  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid \(\beta \)-peptide. Nat Rev Mol Cell Biol 8(2):101

    Article  Google Scholar 

  • Hardy J (2003) The relationship between amyloid and tau. J Mol Neurosci 20(2):203–206

    Article  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–186

    Article  Google Scholar 

  • Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66(1):385–407

    Article  Google Scholar 

  • Helal M, Hingant E, Pujo-Menjouet L, Webb GF (2014) Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J Math Biol 69(5):1207–1235

    Article  MathSciNet  Google Scholar 

  • Helal M, Igel-Egalon A, Lakmeche A, Mazzocco P, Perrillat-Mercerot A, Pujo-Menjouet L, Rezaei H, Tine LM (2018) Stability analysis of a steady state of a model describing Alzheimer’s disease and interactions with prion proteins. J Math Biol pp 1–25

  • Hiltunen M, van Groen T, Jolkkonen J (2009) Functional roles of amyloid-\(\beta \) protein precursor and amyloid-\(\beta \) peptides: evidence from experimental studies. J Alzheimers Dis 18(2):401–412

    Article  Google Scholar 

  • Ittner LM, Götz J (2011) Amyloid-\(\beta \) and tau–a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67

    Article  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  Google Scholar 

  • Lions JL, Magenes E (1972) Non-homogeneous boundary value problems and applications, vol 1. Springer, Berlin

    Book  Google Scholar 

  • Matthaeus F (2009) The spread of prion diseases in the brain models of reaction and transport networks. J Biol Syst 17(04):623–641

    Article  MathSciNet  Google Scholar 

  • Matthäus F (2006) Diffusion versus network models as descriptions for the spread of prion diseases in the brain. J Theor Biol 240(1):104–113

    Article  MathSciNet  Google Scholar 

  • Morales R, Duran-Aniotz C, Castilla J, Estrada L, Soto C (2012) De novo induction of amyloid-\(\beta \) deposition in vivo. Mol Psychiatry 17(12):1347

    Article  Google Scholar 

  • Nowak MA, Krakauer DC, Klug A, May RM (1998) Prion infection dynamics. Integrative Biology: Issues, News, and Reviews: Published in Association with The Society for Integrative and Comparative Biology 1(1):3–15

  • Oda T, Pasinetti G, Osterburg H, Anderson C, Johnson S, Finch C (1994) Purification and characterization of brain clusterin. Biochem Biophys Res Commun 204(3):1131–1136. https://doi.org/10.1006/bbrc.1994.2580

    Article  Google Scholar 

  • Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, Rozovsky I, Stine W, Snyder SW, Holzman TF, Krafft GA, Finch CE (1995) Clusterin (apoJ) alters the aggregation of amyloid \(\beta \)-Peptide (A\(\beta \)1-42) and forms slowly sedimenting A\(\beta \) complexes that cause oxidative stress. Exp Neurol 136(1):22–31. https://doi.org/10.1006/exnr.1995.1080

    Article  Google Scholar 

  • Ohm T, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64(1):209–217

    Article  Google Scholar 

  • Olsson TT, Klementieva O, Gouras GK (2018) Prion-like seeding and nucleation of intracellular amyloid-\(\beta \). Neurobiol Dis 113:1–10

    Article  Google Scholar 

  • Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266):916

    Article  Google Scholar 

  • Raj A, Kuceyeski A, Weiner M (2012) A network diffusion model of disease progression in dementia. Neuron 73(6):1204–1215

    Article  Google Scholar 

  • Rasmussen J, Jucker M, Walker LC (2017) A\(\beta \) seeds and prions: how close the fit? Prion 11(4):215–225

    Article  Google Scholar 

  • Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-\(\beta \) oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49

    Article  Google Scholar 

  • Smith AD (2002) Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci 99(7):4135–4137

    Article  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49

    Article  Google Scholar 

  • Sowade RF, Jahn TR (2017) Seed-induced acceleration of amyloid-\(\beta \) mediated neurotoxicity in vivo. Nat Commun 8(1):512

    Article  Google Scholar 

  • Storandt M, Grant EA, Miller JP, Morris JC (2002) Rates of progression in mild cognitive impairment and early Alzheimer?s disease. Neurology 59(7):1034–1041

    Article  Google Scholar 

  • Stumpf MP, Krakauer DC (2000) Mapping the parameters of prion-induced neuropathology. Proc Natl Acad Sci 97(19):10573–10577

    Article  Google Scholar 

  • Vasseur A, Poupaud F, Collet JF, Goudon T (2002) The Beker–Döring System and Its Lifshitz–Slyozov Limit. SIAM J Appl Math 62(5):1488–1500

    Article  MathSciNet  Google Scholar 

  • Velázquez J (1998) The Becker–Döring equations and the Lifshitz–Slyozov theory of coarsening. J Stat Phys 92(1–2):195–236

    Article  Google Scholar 

  • Xiao T, Zhang W, Jiao B, Pan CZ, Liu X, Shen L (2017) The role of exosomes in the pathogenesis of Alzheimer’s disease. Transl Neurodegeneration 6(1):3

    Article  Google Scholar 

  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16(5):921–932

    Article  Google Scholar 

  • Zhao LN, Long HW, Mu Y, Chew LY (2012) The toxicity of amyloid ß oligomers. Int J Mol Sci 13(6):7303–7327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léon Matar Tine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade-Restrepo, M., Ciuperca, I.S., Lemarre, P. et al. A reaction–diffusion model of spatial propagation of A\(\beta \) oligomers in early stage Alzheimer’s disease. J. Math. Biol. 82, 39 (2021). https://doi.org/10.1007/s00285-021-01593-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01593-3

Keywords

Mathematics Subject Classification

Navigation