Skip to main content
Log in

Population abundance of two-patch competitive systems with asymmetric dispersal

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper considers two-species competitive systems with two patches, in which one of the species can move between the patches. One patch is a source where each species can persist alone, but the other is a sink where the mobile species cannot survive. Based on rigorous analysis on the model, we show global stability of equilibria and bi-stability in the first octant Int\(R_+^3\). Then total population abundance of each species is explicitly expressed as a function of dispersal rates, and the function of the mobile species displays a distorted surface, which extends previous theory. A novel prediction of this work is that appropriate dispersal could make each competitor approach total population abundance larger than if non-dispersing, while the dispersal could reverse the competitive results in the absence of dispersal and promote coexistence of competitors. It is also shown that intermediate dispersal is favorable, large or small one is not good, while extremely large or small dispersal will result in extinction of species. These results are important in ecological conservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Arditi R, Lobry C, Sari T (2015) Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor Popul Biol 106:45–59

    Article  Google Scholar 

  • Arditi R, Lobry C, Sari T (2018) Asymmetric dispersal in the multi-patch logistic equation. Theor Popul Biol 120:11–15

    Article  Google Scholar 

  • Aström J, Pärt T (2013) Negative and matrix-dependent effects of dispersal corridors in an experimental metacommunity. Ecology 94:72–82

    Article  Google Scholar 

  • Briggs CJ, Hoopes MF (2004) Stabilizing effects in spatial parasitoid host and predator–prey models: a review. Theor Popul Biol 65:299–315

    Article  Google Scholar 

  • DeAngelis DL, Simeon Y (2017) Spatially explicit modeling in ecology: a review. Ecosystems 20:284–300

    Article  Google Scholar 

  • El Abdllaoui A, Auger PM, Kooi B, Bravo de la Parra R, Mchich R (2007) Effect of density dependent migrations of prey on stability of a two-patch predator–prey model. Math Biosci 210:335–354

    Article  MathSciNet  Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Fang M, Wang Y, Chen M, DeAngelis DL (2020) Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete Contin Dyn Syst 40:3411–3425

    Article  Google Scholar 

  • Franco D, Ruiz-Herrera A (2015) To connect or not to connect isolated patches. J Theor Biol 370:72–80

    Article  MathSciNet  Google Scholar 

  • Freedman HI, Moson P (1990) Persistence definitions and their connections. Proc Am Math Soc 109:1025–1033

    Article  MathSciNet  Google Scholar 

  • Freedman HI, Waltman D (1977) Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator. SIAM J Appl Math 32:631–648

    Article  MathSciNet  Google Scholar 

  • Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve net- works for both conservation and fisheries management. Proc Natl Acad Sci USA 107:18286–18293

    Article  Google Scholar 

  • Gilbert F, Gonzalez A, Evans-Freke I (1998) Corridors maintain species richness in the fragmented landscapes of a microecosystem. Proc R Soc Lond B 265:577–582

    Article  Google Scholar 

  • Gyllenberg M, Soderbacka G, Ericsson S (1993) Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. Math Biosci 118:25–49

    Article  MathSciNet  Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28:181–207

    Article  MathSciNet  Google Scholar 

  • Hale JK (1969) Ordinary differential equations. Wiley, Hoboken

    MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hutson V, Lou Y, Mischaikow K (2005) Convergence in competition models with small diffusion coefficients. J Differ Equ 211:135–161

    Article  MathSciNet  Google Scholar 

  • Jansen VAA (2001) The dynamics of two diffusively coupled predator–prey populations. Theor Popul Biol 59:119–131

    Article  Google Scholar 

  • Kirkland S, Li C, Schreiber SJ (2006) On the evolution of dispersal in patchy landscapes. SIAM J Appl Math 66:1366–1382

    Article  MathSciNet  Google Scholar 

  • Li MY, Shuai Z (2010) Global-stability problem for coupled systems of differential equations on networks. J Differ Equ 248:1–20

    Article  MathSciNet  Google Scholar 

  • Lou Y (2006) On the effects of migration and spatial heterogeneity on single and multiple species. J Differ Equ 223:400–426

    Article  MathSciNet  Google Scholar 

  • Nguyen Ngoc D, Bravo de la Parra R, Zavala M-A, Auger P (2010) Competition and species coexistence in a metapopulation model: can fast dispersal reverse the outcome of competition? J Theor Biol 266:26–33

    Article  Google Scholar 

  • Nguyen Ngoc D, Nguyen-Huub T, Augerb P (2012) Effects of fast density dependent dispersal on pre-emptive competition dynamics. Ecol Complex 10:26–33

    Article  Google Scholar 

  • Poggiale JC, Auger P, Nerini D, Mante C, Gilbert F (2005) Global production increased by spatial heterogeneity in a population dynamics model. Acta Biotheor 53:359–370

    Article  Google Scholar 

  • Poggiale JC (1998) From behavioural to population level: growth and competition. Math Comput Model 27:41–50

    Article  MathSciNet  Google Scholar 

  • Ruiz-Herrera A (2018) Metapopulation dynamics and total biomass: understanding the effects of diffusion in complex networks. Theor Popul Biol 121:1–11

    Article  Google Scholar 

  • Ruiz-Herrera A, Torres PJ (2018) Effects of diffusion on total biomass in simple metacommunities. J Theor Biol 447:12–24

    Article  MathSciNet  Google Scholar 

  • Samia Y, Lutscher F, Hastings A (2015) Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks. J R Soc Interface 12:20150435

    Article  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat. Cambridge University Press, New York

    Book  Google Scholar 

  • Soule ME, Gilpin ME (1991) The theory of wildlife corridor capability. Nat Conserv 2:3–8

    Google Scholar 

  • Tewksbury JJ (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci USA 99:12923–12926

    Article  Google Scholar 

  • Wang Y (2019) Pollination-mutualisms in a two-patch system with dispersal. J Theor Biol 476:51–61

    Article  MathSciNet  Google Scholar 

  • Wang Y, DeAngelis DL (2019) Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size. Theor Popul Biol 125:30–37

    Article  Google Scholar 

  • Wu H, Wang Y, Li Y, DeAngelis DL (2020) Dispersal asymmetry in a two-patch system with source sink populations. Theor Popul Biol 131:54–65

    Article  Google Scholar 

  • Zhang B, Liu X, DeAngelis DL, Ni WM, Wang GG (2015) Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment. Math Biosci 264:54–62

    Article  MathSciNet  Google Scholar 

  • Zhang B, Alex K, Keenan ML, Lu Z, Arrix LR, Ni W-M, DeAngelis DL, Dyken JD (2017) Carrying capacity in a heterogeneous environment with habitat connectivity. Ecol Lett 20:1118–1128

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their careful reading and helpful comments on the manuscript. This work was supported by NSF of People’s Republic of China (11571382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanshi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The proof of Proposition 2.1

Proof

Since \(y=0\) is a solution of the third equation of (2.1), \(x_1x_2\)-plane is invariant, which implies \(y(t) \ge 0\) as \(t> 0\).

On the boundary \(x_1=0\), from the first equation of (2.1) we have \(dx_1/dt = D_2 x_2\). If \(x_2>0\), then \(dx_1/dt >0\), which implies that \(x_1(t)\) is nonnegative when t increases. Assume \(x_2=0\). Then we have \(x_1=x_2=0\). Since y-axis is an invariant set of system (2.1), no orbit could pass through the invariant set, which implies that \(x_1(t) \equiv 0\). Thus \(x_1(t)\ge 0\) when \(t>0\). Similarly, \(x_2(t)\ge 0\) when \(t>0\). Hence, solutions of systems (2.1) are nonnegative.

Boundedness of the solutions is shown as follows. From the first and second equations of (2.1), we have

$$\begin{aligned} \dfrac{d(x_1 + x_2) }{dt}\le & {} -r_1 x_1 +r_2 x_2 \left( 1- \frac{x_2 }{K_2}\right) \le x_2 ({{\bar{r}}}_2- \frac{r_2 x_2 }{K_2}) -r_1 (x_1 + x_2)\\\le & {} \frac{K_2 {{\bar{r}}}_2^2 }{4r_2} -r_1 (x_1 + x_2), \end{aligned}$$

where \({{\bar{r}}}_2 = r_2 +r_1 \). By the comparison theorem (Hale 1969), we obtain

$$\begin{aligned} \limsup _{t\rightarrow \infty } x_1(t) + x_2(t) \le \frac{K_2 {{\bar{r}}}_2^2 }{4r_1 r_2}, \end{aligned}$$

which implies that \(x_1(t), x_2(t)\) are bounded since they are nonnegative.

From the third equation of (2.1), we have

$$\begin{aligned} \dfrac{dy }{dt} \le r y ( 1- \frac{y}{K}), \end{aligned}$$

which means \(\limsup _{t\rightarrow \infty } y(t) \le K \) by the comparison theorem (Hale 1969). Thus, y(t) is bounded since it is nonnegative. This completes the proof. \(\square \)

Appendix B

The proof of Theorem 3.1

Proof

Denote

$$\begin{aligned} V(x_1, x_2, y) = \frac{ D_1}{r_1 + D_1 } x_1 +x_2. \end{aligned}$$

Since \( D_2 \ge {{\bar{D}}}_2\), we have

$$\begin{aligned} \frac{d V(x_1, x_2, y)}{dt }|_{(2.1) } = x_2 \left( r_2- \frac{ r_1D_2}{r_1 + D_1 } - \frac{ r_2}{K_2 } x_2 \right) - c_{23} x_2 y \le 0. \end{aligned}$$

Let \(\dfrac{d V}{dt }|_{(2.1) } =0\). Then we obtain \(x_i=0, i = 1,2\), which means that all positive solutions of (2.1) converge to the y-axis where \(P_3(0,0,K)\) is globally asymptotically stable on the positive y-axis. We need to show equilibrium O(0, 0, 0) has no stable manifold in Int\(R_+^3\), which implies that equilibrium \(P_3\) is globally asymptotically stable in Int\(R_+^3\) by the LaSalle Invariance Principle. Indeed, the Jacobian matrix of system (2.1) at O is

$$\begin{aligned} J_0= \left( \begin{array}{lcccr} -r_1 - D_1 &{}D_2 &{} 0 \\ D_1 &{} r_2 - D_2 &{} 0 \\ 0 &{}0 &{} r \\ \end{array} \right) . \end{aligned}$$

Then \(J_0\) has an eigenvalue \(\lambda _1 =r>0\). The other two eigenvalues \(\lambda _2, \lambda _3\) satisfy

$$\begin{aligned}&\lambda ^2 +b \lambda +c =0,~b = D_1 - r_2+ D_2 + r_1,~ c = - r_1r_2 -r_2 D_1 + r_1 D_2,\\&\lambda _2 = \frac{1}{2}(-b+ \sqrt{b^2-4c}),~ \lambda _3 = \frac{1}{2}(-b- \sqrt{b^2-4c}),~ \end{aligned}$$

A direct computation shows

$$\begin{aligned} b^2-4c = (D_1 - r_2)^2+ (D_2 - r_1)^2+ 2(D_1 - r_2) +4(r_1r_2 + r_2 D_1) \ge 4 (r_1+ r_2 )D_1 >0. \end{aligned}$$

Since \( D_2 \ge {{\bar{D}}}_2\), we have \(b>0, c>0\) and \(\lambda _{2,3} <0\), which implies that O is a saddle point. We show that the eigenvector of \(J_0\) corresponding to \(\lambda _2\) does not direct towards Int\(R_+^3\), while a similar discussion can be given for \(\lambda _3\). In fact, the eigenvector \(u(u_1,u_2,u_3)\) satisfies

$$\begin{aligned} (-r_1 - D_1- \lambda _2) u_1 +D_2 u_2=0,~ (r-\lambda _2)u_3=0. \end{aligned}$$

A direct computation shows \(-r_1 - D_1- \lambda _2>0\). Then we obtain the eigenvector \(u=(-D_2,-r_1 - D_1- \lambda _2,0)\), which does not direct towards Int\(R_+^3\). This completes the proof. \(\square \)

Appendix C

The proof of Theorem 3.2

Proof

(i) From \(\lambda _3^{(12)}>0\) and \( \lambda _{12}^{(3)} >0\) we have

$$\begin{aligned} r r_2- c_{23}c_{32} K K_2 = \frac{ c_{32} K_2 r_1D_2}{r_2 (r_1+ D_1)} \left( r_2- c_{23} K - \frac{ r_1D_2}{r_2 (r_1+ D_1)} \right) >0. \end{aligned}$$

Since \(\lambda _3^{(12)}>0\), the numerator of \(x_2^*\) in (3.1) is positive. Since \( \lambda _{12}^{(3)} >0\), the numerator of \(y^*\) in (3.1) is positive. Thus, system (2.1) has a unique positive equilibrium \(P^*(x_1^*,x_2^*,y^*)\).

By Lyapunov theory, we construct Lyapunov function in each patch and then combine them by \(\alpha \) via graph method (see Li and Shuai 2010; Hofbauer and Sigmund 1998), which is shown as follows. Denote

$$\begin{aligned} W_1(x_1)= & {} \frac{ D_1 x_1^*}{D_2 x_2^* } \left( x_1- x_1^* -x_1^* \ln \frac{x_1}{x_1^* }\right) ,~~ W_2(x_2)= x_2- x_2^* -x_2^* \ln \frac{x_2}{x_2^* },~~\\ W_3(y)= & {} \alpha (y- y^* -y^* \ln \frac{y}{y^* }),~~ \alpha = \frac{r r_2}{K K_2 c_{32}^2 }. \end{aligned}$$

Let \(V(x_1, x_2, y)=W_1(x_1) +W_2(x_2)+W_3(y)\). Then

$$\begin{aligned} \frac{d V(x_1, x_2, y)}{dt }|_{(2.1) }= & {} - \frac{r_2}{K_2 } (x_2- x_2^* )^2 - (\alpha c_{32} + c_{23} ) (x_2- x_2^* )(y- y^* ) \\&- \frac{r \alpha }{K } (y- y^* )^2 + D_1 x_1^* \left( 2- \frac{x_1 x_2^* }{x_1^* x_2 } - \frac{x_1^* x_2 }{x_1 x_2^* } \right) . \end{aligned}$$

From \(r r_2 \ge c_{23}c_{32}K K_2\) we obtain \((c_{23} +\alpha c_{32} )^2 - 4 r r_2 \alpha /(K K_2) \le 0\), which implies that for all \(x_2\ge 0, y\ge 0\), we have

$$\begin{aligned} - \frac{r_2}{K_2 } (x_2- x_2^* )^2 - (\alpha c_{32} + c_{23} ) (x_2- x_2^* )(y- y^* ) - \frac{r \alpha }{K } (y- y^* )^2 \le 0. \end{aligned}$$

By using the inequality \(2- u - \dfrac{1}{u } \le 0\) as \(u >0\), we obtain \(\dfrac{d V}{dt }|_{(2.1) } \le 0\).

Let \(\dfrac{d V}{dt }|_{(2.1) } =0\). Then we obtain \(x_2 = x_2^*\) and \( y = y^*\), which means \(x_1 = x_1^*\) by the second equation of (2.1). By the LaSalle Invariance Principle, equilibrium \(P^*\) is globally asymptotically stable in Int\(R_+^3\).

(ii) The Jacobian matrix of system (2.1) at \(P_3\) is

$$\begin{aligned} J_3= \left( \begin{array}{lcccr} -r_1 - D_1 &{}D_2 &{} 0 \\ D_1 &{} r_2 - D_2 - c_{23} K &{} 0 \\ 0 &{} - c_{32} K &{} -r \\ \end{array} \right) . \end{aligned}$$

Then \(J_3\) has an eigenvalue \(\lambda _1 =-r<0\). The other two eigenvalues \(\lambda _2, \lambda _3\) satisfy

$$\begin{aligned} \lambda ^2 +a \lambda - \lambda _3^{(12)} =0,~a = r_1 + D_1 + D_2 + c_{23} K- r_2. \end{aligned}$$

From \(\lambda _3^{(12)}<0\), we obtain \(c_{23} K- r_2 >- D_2\), which implies \(a>0\). Then the eigenvalues \(\lambda _2, \lambda _3\) have negative real parts, which implies that equilibrium \(P_3\) is asymptotically stable in Int\(R_+^3\).

(iii) The Jacobian matrix of system (2.1) at \(P_{12}\) is

$$\begin{aligned} J_{12}= \left( \begin{array}{lcccr} -r_1 - D_1 &{}D_2 &{} 0 \\ D_1 &{} r_2 (1- \frac{2x_2^+ }{K_2} ) - D_2 &{} - c_{23} x_2^+ \\ 0 &{} 0 &{} r - c_{32} x_2^+ \\ \end{array} \right) . \end{aligned}$$

Then \(J_{12}\) has an eigenvalue \(\lambda _{12}^{(3)}= r - c_{32} x_2^+ <0\). Since \(D_2 < {{\bar{D}}}_2\), the other two eigenvalues satisfy

$$\begin{aligned}&\lambda ^2 +a_1 \lambda + a_2 =0,\\&a_1 = r_1 + D_1+ \frac{D_1 D_2 }{r_1 + D_1} +r_2 - \frac{r_1 D_2 }{r_1 + D_1}>0,~ a_2 = r_2 (r_1 + D_1) -r_1 D_2 >0, \end{aligned}$$

which implies that the other two eigenvalues of \(J_{12}\) have negative real parts. Then \(P_{12}\) is asymptotically stable in Int\(R_+^3\). Thus, system (2.1) is not persistent. \(\square \)

Appendix D

The proof of Theorem 3.3

Proof

(i) We use functions \(U_1\) and \(U_2\) in the proof of Theorem 2.2 and form the following function by graph method and Lyapunov theory

$$\begin{aligned} V_I(x_1, x_2, y)= & {} U_1(x_1) +U_2(x_2) + \alpha y = \frac{ D_1 x_1^+}{D_2 x_2^+ } \left( x_1- x_1^+ -x_1^+ \ln \frac{x_1}{x_1^+ }\right) \\&+ x_2- x_2^+ -x_2^+ \ln \frac{x_2}{x_2^+ } + \alpha y, \end{aligned}$$

where \(\alpha =r r_2/(K K_2 c_{32}^2 ) \). Then

$$\begin{aligned} \frac{d V_I(x_1, x_2, y)}{dt }|_{(2.1) }= & {} D_1 x_1^+ \left( 2- \frac{x_1 x_2^+ }{x_1^+ x_2 } - \frac{x_1^+ x_2 }{x_1 x_2^+ } \right) + \alpha (r- c_{32} x_2^+) y \\&- \frac{r_2}{K_2 } (x_2- x_2^+ )^2 - (c_{23} +\alpha c_{32} ) (x_2- x_2^+ ) y - \frac{\alpha r}{K } y^2. \end{aligned}$$

From \(r r_2 \ge c_{23}c_{32}K K_2\) we obtain \((c_{23} +\alpha c_{32} )^2 - 4 r r_2 \alpha /(K K_2) \le 0\), which implies that for all \(x_2\ge 0, y\ge 0\), we have

$$\begin{aligned} - \frac{r_2}{K_2 } (x_2- x_2^+ )^2 - (c_{23} +\alpha c_{32} ) (x_2- x_2^+ ) y - \frac{\alpha r}{K } y^2 \le 0. \end{aligned}$$

Since \(\lambda _{12}^{(3)} = r- c_{32} x_2^+<0\), we obtain \(\dfrac{d V_I}{dt }|_{(2.1) } \le 0\) by using the inequality \(2- u - \dfrac{1}{u } \le 0\) as \(u >0\).

Let \(\dfrac{d V_I}{dt }|_{(2.1) } =0\). Then we obtain \(x_i = x_i^+\) and \( y = 0, i=1,2\). By the LaSalle Invariance Principle, equilibrium \(P_{12}\) is globally asymptotically stable in Int\(R_+^3\).

(ii) By graph method and Lyapunov theory, we form the following function

$$\begin{aligned} V_{II}(x_1, x_2, y) = \frac{D_1 }{r_1+ D_1 } x_1 +x_2 + \alpha \left( y- K -K \ln \frac{y}{K }\right) ,~~ \alpha = \frac{r r_2}{K K_2 c_{32}^2 }. \end{aligned}$$

Then

$$\begin{aligned} \frac{d V_{II}(x_1, x_2, y)}{dt }|_{(2.1) } = \lambda _3^{(12)} x_2 - \frac{r_2}{K_2 } x_2^2 - (c_{23} +\alpha c_{32} ) x_2 (y- K) - \frac{\alpha r}{K } (y- K)^2. \end{aligned}$$

From \(r r_2 \ge c_{23}c_{32}K K_2\) we obtain \((c_{23} +\alpha c_{32} )^2 - 4 r r_2 \alpha /(K K_2) <0\), which implies that for all \(x_2\ge 0, y\ge 0\), we have

$$\begin{aligned} - \frac{r_2}{K_2 } x_2^2 - (c_{23} +\alpha c_{32} ) x_2 (y- K) - \frac{\alpha r}{K } (y- K)^2 \le 0. \end{aligned}$$

Since \(\lambda _3^{(12)} <0\), we obtain \(\dfrac{d V_{II}}{dt }|_{(2.1) } \le 0\).

Let \(\dfrac{d V_{II}}{dt }|_{(2.1) } =0\). We obtain \(x_2 = 0, y = K, \) which implies \(x_1 = 0 \) by the second equation of (2.1). By the LaSalle Invariance Principle, equilibrium \(P_3\) is globally asymptotically stable in Int\(R_+^3\). \(\square \)

Appendix E

The proof of Theorem 3.4

Proof

(i) Denote

$$\begin{aligned} \epsilon _0= & {} \frac{K K_2 c_{32} \lambda _3^{(12)} }{2 (c_{23}c_{32}K K_2 -r r_2 ) } >0,\\ {{\bar{\alpha }}}= & {} \frac{1}{ c_{32}^2 } \left[ \frac{2 r r_2}{K K_2 } - \frac{2 r_2 \lambda _{12}^{(3)}}{K_2 (K + \epsilon _0)} - c_{23}c_{32}\right] . \end{aligned}$$

Let \((x_1(t),x_2(t), y(t) )\) be a positive solution of (2.1). Observe that for fixed \(x_2\), the third equation of (2.1) satisfies

$$\begin{aligned} \frac{dy }{dt} \le r y ( 1- \frac{y}{K}), \end{aligned}$$

which implies that \(\limsup _{t\rightarrow \infty }y(t)\le K\). Then there exists \(T>0\) such that \(y(t)\le K + \epsilon _0\) when \(t>T \).

We use a revised version of function \(V_I\) (with different \(\bar{\alpha }\)) in the proof of Theorem 3.3(i), i.e.,

$$\begin{aligned} V_{III}(x_1, x_2, y) = \frac{ D_1 x_1^+}{D_2 x_2^+ } \left( x_1- x_1^+ -x_1^+ \ln \frac{x_1}{x_1^+ }\right) + x_2- x_2^+ -x_2^+ \ln \frac{x_2}{x_2^+ } + {{\bar{\alpha }}} y. \end{aligned}$$

Assume \(t>T \). Then

$$\begin{aligned}&\frac{d V_{III}(x_1, x_2, y) }{dt }|_{(2.1) } = D_1 x_1^+ \left( 2- \frac{x_1 x_2^+ }{x_1^+ x_2 } - \frac{x_1^+ x_2 }{x_1 x_2^+ } \right) +a (x_2- x_2^+ )^2 +b(x_2- x_2^+ )+c,\\&a=- \frac{r_2}{K_2 },~~ b=- (c_{23} +{{\bar{\alpha }}} c_{32} ) y,~~ c= {{\bar{\alpha }}} \lambda _{12}^{(3)} y - \frac{{{\bar{\alpha }}} r}{K } y^2, \end{aligned}$$

so that

$$\begin{aligned} b^2-4ac =y\left\{ \left[ (c_{23} +{{\bar{\alpha }}} c_{32} )^2 - \frac{4rr_2\bar{\alpha }}{K K_2 } \right] y + \frac{4 r_2 {{\bar{\alpha }}} \lambda _{12}^{(3)} }{K_2} \right\} , \end{aligned}$$

where we have \((c_{23} +\alpha c_{32} )^2 - \dfrac{4rr_2\alpha }{K K_2 } >0\) for all \(\alpha \) by \(r r_2 < c_{23}c_{32}K K_2\). Since

$$\begin{aligned} K +\epsilon _0 < \frac{- r_2 K {{\bar{\alpha }}} \lambda _{12}^{(3)} }{ c_{23}c_{32}K K_2 -r r_2 }, \end{aligned}$$

we have

$$\begin{aligned} \frac{rr_2 }{K K_2 } - \frac{ r_2 \lambda _{12}^{(3)} }{K_2 (K +\epsilon _0 )} - c_{23}c_{32} >0, \end{aligned}$$

so that \({{\bar{\alpha }}} >0\) and

$$\begin{aligned} c_{32}^2 {{\bar{\alpha }}}^2 +\left[ 2 c_{23}c_{32} - \frac{4rr_2 }{K K_2 } + \frac{4 r_2 \lambda _{12}^{(3)} }{K_2 (K +\epsilon _0 )}\right] {{\bar{\alpha }}} +c_{23}^2 <0 \end{aligned}$$

which implies \(b^2-4ac \le 0.\) By using the inequality \(2- u - \dfrac{1}{u } \le 0\) as \(u >0\), we obtain \(\dfrac{d V_{III}}{dt }|_{(2.1) } \le 0\).

Let \(\dfrac{d V_{III}}{dt }|_{(2.1) } =0\). We obtain \( y = 0, x_i = x_i^+, i=1,2\). By the LaSalle Invariance Principle, equilibrium \(P_{12}\) is globally asymptotically stable in Int\(R_+^3\).

(ii) Denote

$$\begin{aligned} \epsilon _0= & {} \frac{1}{2 } \left[ \frac{-r K_2 \lambda _3^{(12)} }{(r_1+ D_1) (c_{23}c_{32}K K_2 -r r_2 ) } - x_2^+ \right] ,\\ {{\hat{\alpha }}}= & {} \frac{1}{ c_{32}^2 } \left[ \frac{2 r r_2}{K K_2 } - \frac{2 r \lambda _3^{(12)}}{K (r_1+ D_1) (x_2^+ + \epsilon _0)} - c_{23}c_{32}\right] . \end{aligned}$$

Then a direct computation shows

$$\begin{aligned} \epsilon _0 = \frac{K K_2 c_{23} \lambda _{12}^{(3)} }{2(c_{23}c_{32}K K_2 -r r_2 ) } >0. \end{aligned}$$

Since \(D_2 < {{\bar{D}}}_2 \), the boundary equilibrium \(P_{12}\) is globally asymptotically stable in Int\(R_+^2\) when \(y=0\). Let \((x_1(t),x_2(t), y(t) )\) be a positive solution of (2.1). Observe that for fixed y, the \((x_1,x_2 )\) subsystem of (2.1) is cooperative with

$$\begin{aligned} \begin{aligned} \frac{dx_1}{dt}&\le -r_1 x_1 + D_2x_2 -D_1x_1 \\ \frac{dx_2}{dt}&\le r_2 x_2 ( 1- \frac{x_2}{K_2}) +D_1x_1 - D_2x_2. \end{aligned} \end{aligned}$$

Consider a planar system

$$\begin{aligned} \begin{aligned} \frac{dX_1}{dt}&= -r_1 X_1 + D_2X_2 -D_1X_1 \\ \frac{dX_2}{dt}&= r_2 X_2 ( 1- \frac{X_2}{K_2}) +D_1X_1 - D_2X_2. \end{aligned} \end{aligned}$$
(5.1)

By Theorem 2.2, all positive solutions of (5.1) converge to equilibrium \(E_{12}(x_1^+,x_2^+)\). Let \((x_1(t),x_2(t),y(t))\) be a positive solution of (2.1). Since (5.1) is cooperative, we have \(\limsup _{t\rightarrow \infty }x_i(t)\le x_i^+, i=1,2\) (cf. Appendix B, Smith and Waltman 1995). Then there exists \(T>0\) such that \(x_2(t)\le x_2^+ + \epsilon _0\) when \(t>T \).

Assume \(t>T \). Denote

$$\begin{aligned} V_{IV}(x_1, x_2, y) =x_1 +x_2 + {{\hat{\alpha }}} (y- K -K \ln \frac{y}{K }). \end{aligned}$$

Then we have

$$\begin{aligned} \frac{d V_{IV}(x_1, x_2, y)}{dt }|_{(2.1) } =a (y- K)^2 +b(y- K)+c,~~\end{aligned}$$
$$\begin{aligned} a=- \frac{{{\hat{\alpha }}} r}{K },~~ b=- (c_{23} +{{\hat{\alpha }}} c_{32} ) x_2,~~ c=\frac{\lambda _3^{(12)}}{r_1+ D_1 }x_2 - \frac{r_2}{K_2 } x_2^2, \end{aligned}$$

so that

$$\begin{aligned} b^2-4ac =x_2 \left\{ \left[ (c_{23} +{{\hat{\alpha }}} c_{32} )^2 - \frac{4rr_2\hat{\alpha }}{K K_2 } \right] x_2 - \frac{-4 r {{\hat{\alpha }}}\lambda _3^{(12)} }{K (r_1+ D_1)} \right\} , \end{aligned}$$

where we have \((c_{23} +\alpha c_{32} )^2 - \dfrac{4rr_2\alpha }{K K_2 } >0\) for all \(\alpha \) by \(r r_2 < c_{23}c_{32}K K_2\). Since

$$\begin{aligned} x_2^+ +\epsilon _0 < \frac{- r K_2 {{\hat{\alpha }}}\lambda _3^{(12)} }{ (r_1+ D_1) (c_{23}c_{32}K K_2 -r r_2 )}, \end{aligned}$$

we have

$$\begin{aligned} \frac{rr_2{{\hat{\alpha }}} }{K K_2 } - \frac{ r \lambda _3^{(12)} }{K (r_1+ D_1)(x_2^+ +\epsilon _0 )} - c_{23}c_{32} >0, \end{aligned}$$

so that \({{\hat{\alpha }}} >0\) and

$$\begin{aligned} c_{32}^2 {{\hat{\alpha }}}^2 +\left[ 2 c_{23}c_{32} - \frac{4rr_2 }{K K_2 } + \frac{4 r \lambda _3^{(12)} }{K (r_1+ D_1)(x_2^+ +\epsilon _0 )}\right] {{\hat{\alpha }}} +c_{23}^2 <0 \end{aligned}$$

which implies

$$\begin{aligned} b^2-4ac \le x_2 \left\{ \left[ (c_{23} +{{\hat{\alpha }}} c_{32} )^2 - \frac{4rr_2{{\hat{\alpha }}} }{K K_2 } \right] (x_2^+ +\epsilon _0 ) - \frac{-4 r {{\hat{\alpha }}}\lambda _3^{(12)} }{K (r_1+ D_1)} \right\} \le 0. \end{aligned}$$

Let \(\dfrac{d V_{IV}}{dt }|_{(2.1) } =0\). Then we obtain \( y = K, x_i = 0, i=1,2\). By the LaSalle Invariance Principle, equilibrium \(P_3\) is globally asymptotically stable in Int\(R_+^3\).

(iii) By Theorem 3.2(ii–iii), equilibrium \(P_{12}\) and \(P_3\) are asymptotically stable in Int\(R_+^3\) since \(\lambda _{12}^{(3)} <0\) and \(\lambda _3^{(12)} <0\), respectively. From (3.1), system (2.1) has a positive equilibrium \(P^*(x_1^*,x_2^*,y^*)\). From (2.1), the Jacobian matrix of system (2.1) at \(P^*\) is

$$\begin{aligned} J^*= \left( \begin{array}{lcccr} -r_1 - D_1 &{}D_2 &{} 0 \\ D_1 &{} - \frac{r_2}{K_2 } x_2^* - \frac{D_1D_2}{r_1 +D_1 } &{} - c_{23} x_2^* \\ 0 &{} - c_{32} y^* &{} -\frac{r}{K } y^* \\ \end{array} \right) . \end{aligned}$$

The characteristic equation of \(J^*\) is

$$\begin{aligned}&\lambda ^3 +a_1 \lambda ^2 +a_2 \lambda +a_3 =0, \\&a_1 = r_1 + D_1 + \dfrac{r_2}{K_2 } x_2^* + \dfrac{D_1D_2}{r_1 +D_1 } + \dfrac{r}{K } y^*>0,\\&a_3 = - x_2^*y^*\dfrac{r_1 + D_1}{K K_2 } (c_{23}c_{32}K K_2 -rr_2)<0. \end{aligned}$$

Thus, the three eigenvalues \(\lambda _i\) of \(J^*\) satisfy

$$\begin{aligned} \lambda _1+\lambda _2+\lambda _3 =-a_1 <0,~~ \lambda _1\lambda _2\lambda _3 =-a_3 >0, \end{aligned}$$

which implies that one of the eigenvalues is positive and the other two eigenvalues have negative real parts, i.e., Re\(\lambda _i<0\) and \(\lambda _3> 0, i=1,2\). Thus, equilibrium \(P^*\) is a saddle point with a two-dimensional stable manifold. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, H., He, Y. et al. Population abundance of two-patch competitive systems with asymmetric dispersal. J. Math. Biol. 81, 315–341 (2020). https://doi.org/10.1007/s00285-020-01511-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01511-z

Keywords

Mathematics Subject Classification

Navigation