Skip to main content

Advertisement

Log in

Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Despite centuries of continuous efforts, mosquito-borne diseases (MBDs) remain enormous health threat of human life worldwide. Lately, the USA government has approved an innovative technology of releasing Wolbachia-infected male mosquitoes to suppress the wild mosquito population. In this paper we first introduce a stage-structured model for natural mosquitos, then we establish a new model considering the releasing of Wolbachia-infected male mosquitoes and the mating competition between the natural male mosquitoes and infected males on the suppression of natural mosquitoes. Dynamical analysis of the two models, including the existence and local stability of the equilibria and bifurcation analysis, reveals the existence of a forward bifurcation or a backward bifurcation with multiple attractors. Moreover, globally dynamical properties are further explored by using Lyapunov function and theory of monotone operators, respectively. Our findings suggest that infected male augmentation itself cannot always guarantee the success of population eradication, but leads to three possible levels of population suppression, so we define the corresponding suppression rate and estimate the minimum release ratio for population eradication. Furthermore, we study how the release ratio of infected males and natural ones, mating competition, the rate of cytoplasmic incompatibility and the basic offspring number affect the suppression rate of natural mosquitoes. Our results show that the successful eradication relies on assessing the reproductive capacity of natural mosquitoes, a selection of suitable Wolbachia strains and an appropriate release amount of infected males. This study will be helpful for public health authorities in designing proper strategies to control vector mosquitoes and prevent the epidemics of MBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelrazec A, Lenhart S, Zhu H (2014) Transmission dynamics of west nile virus in mosquitoes and corvids and non-corvids. J Math Biol 68(6):1553–1582

    MathSciNet  MATH  Google Scholar 

  • Agnew P, Haussy C, Michalakis Y (2000) Effects of density and larval competition on selected life history traits of culex pipiens quinquefasciatus (diptera: Culicidae). J Med Entomol 37(5):732–735

    Google Scholar 

  • Anguelov R, Dumont Y, Lubuma J (2012) Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput Math Appl 64(3):374–389

    MathSciNet  MATH  Google Scholar 

  • Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Yao X, Dimopoulos G, Xi Z (2013) Wolbachia invades anopheles stephensi populations and induces refractoriness to plasmodium infection. Science 340(6133):748–751

    Google Scholar 

  • Brelsfoard CL, Séchan Y, Dobson SL (2008) Interspecific hybridization yields strategy for south pacific filariasis vector elimination. PLoS Neglect Trop D 2(1):e129

    Google Scholar 

  • Cai L, Ai S, Li J (2014) Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J Appl Math 74(6):1786–1809

    MathSciNet  MATH  Google Scholar 

  • Caraballo H, King K (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg Med Pract 16(5):1–23

    Google Scholar 

  • Caspari E, Watson GS (1959) On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 13(4):568–570

    Google Scholar 

  • Chan MHT, Kim PS (2013) Modelling a wolbachia invasion using a slow–fast dispersal reaction–diffusion approach. B Math Biol 75:1501–1523

    MathSciNet  MATH  Google Scholar 

  • Dean JL, Dobson SL (2004) Characterization of wolbachia infections and interspecific crosses of aedes (stegomyia) polynesiensis and ae.(stegomyia) riversi (diptera: Culicidae). J Med Entomol 41(5):894–900

    Google Scholar 

  • Dobson SL, Fox CW, Jiggins FM (2002) The effect of wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc R Soc Lond B Bio 269(1490):437–445

    Google Scholar 

  • Dufourd C, Dumont Y (2012) Modeling and simulations of mosquito dispersal. the case of aedes albopictus. Biomath 1(2):1209262

    MathSciNet  MATH  Google Scholar 

  • Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA (2016) Wolbachia blocks currently circulating zika virus isolates in brazilian aedes aegypti mosquitoes. Cell Host Microbe 19(6):771–774

    Google Scholar 

  • Farkas JZ, Hinow P (2010) Structured and unstructured continuous models for wolbachia infections. B Math Biol 72:2067–2088

    MathSciNet  MATH  Google Scholar 

  • Hancock PA, Sinkins SP, Charles H, Godfray J (2011) Strategies for introducing wolbachia to reduce transmission of mosquito-borne diseases. PLoS Neglect Trop D 5:e1024

    Google Scholar 

  • Hancock PA, White VL, Ritchie SA, Hoffmann AA, Charles H, Godfray J (2016) Predicting wolbachia invasion dynamics in aedes aegypti populations using models of density-dependent demographic traits. BMC Biol 14:96

    Google Scholar 

  • He S, Zhang X, Liang J, Tang S (2017) Multiscale modelling the effects of CI genetic evolution in mosquito population on the control of dengue fever. Sci Rep UK 7(1):13895

    Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y et al (2011) Successful establishment of wolbachia in aedes populations to suppress dengue transmission. Nature 476(7361):454–457

    Google Scholar 

  • Hu L, Huang M, Tang M, Yu J, Zheng B (2015) Wolbachia spread dynamics in stochastic environments. Theor Popul Biol 106:32–44

    MATH  Google Scholar 

  • Huang MG, Tang MX, Yu JS (2015) Wolbachia infection dynamics by reaction–diffusion equations. Sci China Math 58(1):77–96

    MathSciNet  MATH  Google Scholar 

  • Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Khromykh AA, Asgari S (2013) Effect of wolbachia on replication of west nile virus in a mosquito cell line and adult mosquitoes. J Virol 87(2):851–858

    Google Scholar 

  • Jansen VAA, Turelli M, Godfray HCJ (2008) Stochastic spread of wolbachia. Proc R Soc Lond B Biol 275:2769–2776

    Google Scholar 

  • Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening wolbachia and reduced filarial competence in mosquitoes. Science 326(5949):134–136

    Google Scholar 

  • Keeling MJ, Jiggins FM, Read JM (2003) The invasion and coexistence of competing wolbachia strains. Heredity 91:382

    Google Scholar 

  • Korobeinikov A, Wake GC (2002) Lyapunov functions and global stability for sir, sirs, and sis epidemiological models. Appl Math Lett 15(8):955–960

    MathSciNet  MATH  Google Scholar 

  • Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O’Neill SL, Ooi EE, Ritchie SA, Ryan PA, Scott TW et al (2017) Assessing the epidemiological effect of wolbachia for dengue control. Lancet Infect Dis 15:862–866

    Google Scholar 

  • Laven H (1967) Eradication of culex pipiens fatigans through cytoplasmic incompatibility. Nature 216(5113):383–384

    Google Scholar 

  • Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a seir model with varying total population size. Math Biosci 160(2):191–213

    MathSciNet  MATH  Google Scholar 

  • Li Y, Liu X (2017) An impulsive model for wolbachia infection control of mosquito-borne diseases with general birth and death rate functions. Nonlinear Anal RWA 37:412–432

    MathSciNet  MATH  Google Scholar 

  • Li Y, Liu X (2018) A sex-structured model with birth pulse and release strategy for the spread of wolbachia in mosquito population. J Theor Biol 448:53–65

    MathSciNet  MATH  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’neill SL (2009) Stable introduction of a life-shortening wolbachia infection into the mosquito aedes aegypti. Science 323(5910):141–144

    Google Scholar 

  • Ndii MZ, Hickson RI, Allingham D, Mercer GN (2015) Modelling the transmission dynamics of dengue in the presence of wolbachia. Math Biosci 262:157–166

    MathSciNet  MATH  Google Scholar 

  • O’Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL (2012) Open release of male mosquitoes infected with a wolbachia biopesticide: field performance and infection containment. PLoS Neglect Trop D 6(11):e1797

    Google Scholar 

  • Perlmutter JI, Meyers JE, Bordenstein SR (2020) Transgenic testing does not support a role for additional candidate genes in wolbachia male killing or cytoplasmic incompatibility. mSystems 5(1):1–20

    Google Scholar 

  • Rasgon JL, Styer LM, Scott TW (2003) Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods. J Med Entomol 40(2):125–132

    Google Scholar 

  • Ritchie SA, van den Hurk AF, Smout MJ, Staunton KM, Hoffmann AA (2018) Mission accomplished? we need a guide to the ’post release’ world of wolbachia for aedes-borne disease control. Trends Parasitol 34(3):217–226

    Google Scholar 

  • Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA (2014) The effect of virus-blocking wolbachia on male competitiveness of the dengue vector mosquito, aedes aegypti. PLoS Neglect Trop D 8(12):e3294

    Google Scholar 

  • Shan C, Zhu H (2014) Bifurcations and complex dynamics of an sir model with the impact of the number of hospital beds. J Differ Equ. 257(5):1662–1688

    MathSciNet  MATH  Google Scholar 

  • Tolle MA (2009) Mosquito-borne diseases. Curr Prob Pediatr Adolesc Health Care 39:97–140

    Google Scholar 

  • Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513

    Google Scholar 

  • Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in california drosophila. Nature 353(6343):440

    Google Scholar 

  • Vautrin E, Charles S, Genieys S, Vavre F (2007) Evolution and invasion dynamics of multiple infections with wolbachia investigated using matrix based models. J Theor Biol 245:197–209

    MathSciNet  Google Scholar 

  • Walker TJPH, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P et al (2011) The wmel wolbachia strain blocks dengue and invades caged aedes aegypti populations. Nature 476:450

    Google Scholar 

  • Waltz E (2016) Infected mosquitoes could fight zika. Nature 533:22–25

    Google Scholar 

  • Waltz E (2017) USA government approves ‘killer’ mosquitoes to fight disease. https://www.nature.com/news/us-government-approves-killer-mosquitoes-to- fight-disease-1.22959. Accessed 06 Nov 2017

  • Wang Y, Pons W, Fang J, Zhu H (2017) The impact of weather and storm water management ponds on the transmission of west nile virus. R Soc Open Sci 4(8):170017

    Google Scholar 

  • Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos, vol 2. Springer, New York

    MATH  Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009) Assessing the effects of temperature on the population of aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188–1202

    Google Scholar 

  • Xianghong Z, Tang S, Cheke RA, Zhu H (2016) Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation. B Math Biol 78:1968–2010

    MathSciNet  MATH  Google Scholar 

  • Zhang X, Tang S, Liu Q, Cheke RA, Zhu H (2018) Models to assess the effects of non-identical sex ratio augmentations of wolbachia-carrying mosquitoes on the control of dengue disease. Math Biosci 299:58–72

    MathSciNet  MATH  Google Scholar 

  • Zheng B, Tang M, Yu J (2014) Modeling wolbachia spread in mosquitoes through delay differential equations. SIAM J Appl Math 74:743–770

    MathSciNet  MATH  Google Scholar 

  • Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, Liang Y, Pan X, Hu L, Sun Q et al (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572(7767):56–61

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC, 61772017), the Doctoral Fund of Southwest University (No. SWU019046) and the NSERC and CIHR of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiping Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, Q. & Zhu, H. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. J. Math. Biol. 81, 243–276 (2020). https://doi.org/10.1007/s00285-020-01509-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01509-7

Keywords

Mathematics Subject Classification

Navigation