Skip to main content

Advertisement

Log in

Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 22 July 2015

Abstract

A reaction–diffusion system modeling cholera epidemic in a non-homogeneously mixed population is introduced. The interaction between population and toxigenic Vibrio cholerae concentration in contaminated water has been taken into account. The existence of biologically meaningful equilibria is investigated together with their linear and nonlinear stability. Using the data collected during the Haiti cholera epidemic, a numerical simulation is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Buonomo B, Lacitignola D (2008) On the dynamics of an SEIR epidemic model with a convex incidence rate. Ric Mat 57(2):261–281

    Article  MATH  MathSciNet  Google Scholar 

  • Buonomo B, Lacitignola D (2010) Global stability for a four dimensional epidemic model. Note Mat 30(2):83–95

    MathSciNet  Google Scholar 

  • Buonomo B, Rionero S (2010) On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl Math Comput 217:4010–4016

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley, Chichester

    MATH  Google Scholar 

  • Capasso V (1978) Global solution for a diffusive nonlinear deterministic epidemic model. SIAM J Appl Math 35(2):274–284

    Article  MATH  MathSciNet  Google Scholar 

  • Capasso V (1993) Mathematical structures of epidemic systems. Lecture Notes in Biomathematics, vol 97. Springer, Berlin

  • Capasso V, Maddalena L (1981) Convergence to equilibrium states for a reaction–diffusion system modeling the spatial spread of a class of bacterial and viral diseases. J Math Biol 13:173–184

    Article  MATH  MathSciNet  Google Scholar 

  • Capasso V, Paveri-Fontana SL (1979) A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev épidémiol Santè Publique 27(2):121–132

    Google Scholar 

  • Capone F (2008) On the dynamics of predator-prey models with the Beddington–De Angelis functional response, under Robin boundary conditions. Ric Mat 57:137–157

    Article  MATH  MathSciNet  Google Scholar 

  • Capone F, De Cataldis V, De Luca R (2013) On the nonlinear stability of an epidemic SEIR reaction diffusion model. Ric Mat 62(1):161–181

  • Capone F, De Cataldis V, De Luca R (2014) On the stability of a SEIR reaction diffusion model for infections under Neumann boundary conditions. Acta Appl Math 132(1):165–176

  • Chinviriyasit S, Chinviriyasit W (2010) Numerical modeling of an SIR epidemic model with diffusion. Appl Math Comput 216(2):395–409

    Article  MATH  MathSciNet  Google Scholar 

  • Codeco CT (2001) Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect Dis 1:1. doi:10.1186/1471-2334-1-1

    Article  Google Scholar 

  • Colwell RR, Huq A (1994) Environmental reservoir of Vibrio cholerae, the causative agent of cholera. Ann N Y Acad Sci 740:44–54

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MATH  MathSciNet  Google Scholar 

  • Dushoff J, Huang W, Castillo-Chavez C (1998) Backwards bifurcations and catastrophe in simple models of fatal diseases. J Math Biol 36:227–248

    Article  MATH  MathSciNet  Google Scholar 

  • Flavin JN, Rionero S (1996) Qualitative estimates for partial differential equations: an introduction. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Islam M, Miah M, Hasan M, Sack R, Albert M (1994) Detection of non-culturable Vibrio cholerae O1 associated with a cyano bacterium from an aquatic environment in Bangladesh. Trans R Soc Trop Med Hyg 88:298–299

    Article  Google Scholar 

  • Kermack W, McKendrick A (1927) Contributions to the mathematical theory of epidemics (Part I). Proc R Soc A 115(772):700–721

    Article  MATH  Google Scholar 

  • Merkin DR (1997) Introduction to the theory of stability. Text in Applied Mathematic, vol 24. Springer, Berlin

  • Mulone G, Straughan B, Wang W (2007) Stability of epidemic models with evolution. Stud Appl Math 118(2):117–132

    Article  MathSciNet  Google Scholar 

  • Payne LE, Weinberger HF (1960) An optimal Poincarè inequality for convex domains. Arch Ration Mech Anal 5(1):286–292

    Article  MATH  MathSciNet  Google Scholar 

  • Protter MH, Weinberger HF (1967) Maximum principles in differential equations. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Rionero S (2011) Stability of ternary reaction–diffusion dynamical systems. Rend Lincei Mat Appl 22(3):245–268

    MATH  MathSciNet  Google Scholar 

  • Rionero S (2011) A peculiar Lyapunov functional for ternary reaction–diffusion dynamical systems. Boll UMI (9) IV:393–407

  • Sack DA, Cadoz M (1999) Cholera vaccines. In: Plotkin AS, Orenstein WA (eds) Vaccines. WB Saunders Co, Philadelphia

    Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363(9404):223–233

  • Sanches RP, Ferreira CP, Kraenkel RA (2011) The role of immunity and seasonality in cholera epidemics. Bull Math Biol 73:2916–2931

    Article  MATH  MathSciNet  Google Scholar 

  • Sengupta TK, Nandy RK, Mukhopadyay S, Hall RH, Sathyamoorthy V, Ghose AC (1998) Characterization of a 20-KDa pilus protein expressed by a diarrheogenic strain of non-O1/non-O139 Vibrio cholerae. FEMS Microbiol Lett 160:183–189

    Article  Google Scholar 

  • Shuai Z, Van Den Driessche P (2012) Impact of heterogeneity on the dynamics of an SEIR epidemic model. Math Biosci Eng 9(2):393–411

    Article  MATH  MathSciNet  Google Scholar 

  • Smoller J (1967) Shock waves and reaction diffusion equations. Springer, Berlin

  • Tian JP, Liao S, Wang J (2010) Dynamical analysis and control strategies in modeling cholera (preprint). http://www.math.ttu.edu/past/redraider2010/Tian2.pdf (Accessed 14 Dec)

  • Tian J, Wang J (2011) Global stability for cholera epidemic models. Math Biosci 232:31–41

    Article  MATH  MathSciNet  Google Scholar 

  • Wang W (2006) Epidemic models with nonlinear infection forces. Math Biosci Eng 3(1):267–279

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou X, Cui J (2010) Modeling and stability analysis for a cholera model with vaccination. Math Methods Appl Sci 34:1711–1724

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper has been performed under the auspices of the G.N.F.M. of I.N.d.A.M. The Referees’ competence and comments are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florinda Capone.

Appendix

Appendix

1.1 Proof of Theorem 1

Let us set \( \max _{\bar{\Omega }_T}\,B=B({\mathbf x}_1, t_1)\). We have to distinguish two cases.

  1. (1)

    If \(({\mathbf x}_1,t_1)\) belongs to the interior of \(\Omega _T\), then (1)\(_3\) and \(\Vert I\Vert _\infty \le N_0\) imply that

    $$\begin{aligned} \left[ \frac{\partial B}{\partial t}-eN_0+(\mu _B-\pi _B)B-\gamma _3\Delta B\right] _{({\mathbf x}_1,t_1)}<0. \end{aligned}$$
    (53)

    Since

    $$\begin{aligned} \left[ \frac{\partial B}{\partial t}\right] _{({\mathbf x}_1,t_1)}=0,\qquad \left[ \Delta B\right] _{({\mathbf x}_1,t_1)}<0, \end{aligned}$$

    then (53) can hold if and only if

    $$\begin{aligned} -eN_0+(\mu _B-\pi _B)B({\mathbf x}_1,t_1)<0 \end{aligned}$$

    and hence if and only if \(B({\mathbf x}_1,t_1)< \frac{eN_0}{\mu _B-\pi _B}\).

  2. (2)

    If \(({\mathbf x}_1, t_1)\in \Gamma _T\), in view of the regularity of the domain \(\Omega \), since \(\Omega \) verifies in any point \({\mathbf x}_0\in \partial \Omega \) the interior ball condition, there exists an open ball \(B^*\subset \Omega \) with \({\mathbf x}_0\in \partial B^*\). If \(B({\mathbf x}_1, t_1)> \frac{eN_0}{\mu _B-\pi _B}\), on choosing the radius of \(B^*\) sufficiently small, it follows that

    $$\begin{aligned} \gamma _3\Delta B- \frac{\partial B}{\partial t}>0,\quad \hbox {in}\,\, B^* \end{aligned}$$

    and by virtue of Hopf’s Lemma (Protter and Weinberger 1967), one obtains that

    $$\begin{aligned} \left( \frac{dB}{d{\mathbf n}}\right) _{({\mathbf x}_1,t_1)}>0. \end{aligned}$$

    Since \(\frac{dB}{d{\mathbf n}}=0\) on \(\partial \Omega \times {\mathbb R}^+\), (10) follows.

1.2 Proof of Theorem 2

Substituting \((\bar{S},\,\bar{I},\,\bar{B},\,\bar{R})=(N_0,0,0,0)\) in (17), one has that

$$\begin{aligned} {\left\{ \begin{array}{ll} b_{11}=-(\mu +\bar{\alpha }\gamma _1),\quad b_{13}=- \frac{\mu _3\beta N_0}{\mu _1K_B},\quad b_{21}=0,\\ b_{22}=-(\sigma +\mu +\bar{\alpha }\gamma _2),\quad b_{23}= \frac{\mu _3\beta N_0}{\mu _2K_B},\\ b_{32}= \frac{\mu _2}{\mu _3}e,\quad b_{33}=-(\mu _B-\pi _B+\bar{\alpha }\gamma _3). \end{array}\right. } \end{aligned}$$
(54)

Hence

$$\begin{aligned} A^{*}&= (\sigma +\mu +\bar{\alpha }\gamma _2)(\mu _B-\pi _B+\bar{\alpha }\gamma _3)- \frac{\beta N_0 e}{K_B}\nonumber \\&= (\sigma + \mu )(\mu _B - \pi _B)\left[ 1 - R_0 + \frac{\bar{\alpha }[\gamma _2(\mu _B - \pi _B) + \gamma _3(\sigma + \mu ) + \bar{\alpha }\gamma _2\gamma _3]}{(\sigma +\mu )(\mu _B-\pi _B)}\right] \nonumber \\&= (\sigma +\mu )(\mu _B-\pi _B)(R^*_0-R_0) \end{aligned}$$
(55)

and

$$\begin{aligned} A^{*}_1=0,\quad A^{*}_2=-b_{11}(b_{11}+\mathtt{I }^{*})<0. \end{aligned}$$
(56)

In view of (56), it follows that

$$\begin{aligned} \max \{A^{*}_1,A^*_2\}=0. \end{aligned}$$

Hence (24) is verified if and only if

$$\begin{aligned} A^{*}>0, \end{aligned}$$
(57)

i.e., by virtue of (55), if and only if (27) holds.

1.3 Proof of Theorem 3

Substituting \((\bar{S},\,\bar{I},\,\bar{B},\,\bar{R})=(S_2,\,I_2,\,B_2,\, R_2)\) in (17), one has that

$$\begin{aligned} {\left\{ \begin{array}{ll} b_{11}=- \dfrac{\mu (\beta +\mu )R_0+\bar{\alpha }\gamma _1(\beta +\mu R_0)}{\beta +\mu R_0},\\ b_{13}=- \dfrac{\mu _3(\sigma +\mu )(\mu _B-\pi _B)(\beta +\mu )}{\mu _1e(\beta +\mu R_0)},\\ b_{21}= \dfrac{\mu _1\beta \mu (R_0-1)}{\mu _2(\beta +\mu R_0)},\quad b_{22}=-(\sigma +\mu +\bar{\alpha }\gamma _2),\\ b_{23}=- \dfrac{\mu _1}{\mu _2}b_{13},\quad b_{32}= \dfrac{\mu _2}{\mu _3}e,\quad b_{33}=-(\mu _B-\pi _B+\bar{\alpha }\gamma _3).\end{array}\right. } \end{aligned}$$
(58)

Hence

$$\begin{aligned} A^{*}&= (\sigma + \mu + \bar{\alpha }\gamma _2)(\mu _B - \pi _B + \bar{\alpha }\gamma _3) - \frac{(\sigma + \mu )(\mu _B - \pi _B)(\beta + \mu )}{\beta +\mu R_0}\nonumber \\&= \frac{\mu (\sigma + \mu )(\mu _B - \pi _B)(R_0 - 1)}{\beta +\mu R_0} + \bar{\alpha }\left[ \gamma _2(\mu _B - \pi _B) + \gamma _3(\sigma + \mu ) + \bar{\alpha }\gamma _2\gamma _3\right] ,\nonumber \\ \end{aligned}$$
(59)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} A^{*}_1=- \dfrac{\beta \mu (\beta +\mu )(\sigma +\mu )(\mu _B-\pi _B)(R_0-1)}{(\beta +\mu R_0)[\mu R_0(\beta +\mu )+\bar{\alpha }\gamma _1(\beta +\mu R_0)]},\\ A^*_2=- \dfrac{K_1 R^2_0+K_2R_0+K_3}{(\beta +\mu R_0)^2[\sigma +\mu +\mu _B-\pi _B+\bar{\alpha }(\gamma _2+\gamma _3)]}(<\!0), \end{array}\right. } \end{aligned}$$
(60)

where \(K_i,\,(i=1,2,3)\) are positive constants given by

$$\begin{aligned} K_1&= \mu ^2(\sigma + \mu + \mu _B - \pi _B + \bar{\alpha }(\gamma _2 + \gamma _3))\left\{ \bar{\alpha }\gamma _1[\sigma + \mu + \mu _B - \pi _B \right. \\&+\, \bar{\alpha }(\gamma _1 + \gamma _2 + \gamma _3)] + (\beta +\mu ) \left[ \beta +\mu +\sigma +\mu +\mu _B-\pi _B\right. \\&+\left. \left. \bar{\alpha }(\gamma _1+\gamma _2+\gamma _3)+\bar{\alpha }\gamma _1\right] \right\} , \end{aligned}$$
$$\begin{aligned} K_2&= \beta \mu \left\{ \left[ \sigma +\mu +\mu _B-\pi _B+\bar{\alpha }(\gamma _2+\gamma _3)\right] \left[ \bar{\alpha }(\beta +\mu )(\gamma _1+\gamma _2+\gamma _3)\right. \right. \\&+\left. \bar{\alpha }\gamma _1(\beta +\mu )+2\bar{\alpha }\gamma _1(\sigma +\mu +\mu _B-\pi _B+\bar{\alpha }(\gamma _1+\gamma _2+\gamma _3))\right] \\&+\!\left. (\beta +\mu )(\mu _B-\pi _B)^2+(\beta +\mu )(\sigma +\mu +\mu _B-\pi _B)[\sigma +\mu +\bar{\alpha }(\gamma _2+\gamma _3)]\right\} \end{aligned}$$

and

$$\begin{aligned} K_3&= \beta ^2\bar{\alpha }\gamma _1[\sigma \!+\! \mu \!+\! \mu _B \!-\! \pi _B \!+\! \bar{\alpha }(\gamma _2 + \gamma _3)] [\sigma + \mu + \mu _B - \pi _B + \bar{\alpha }(\gamma _1 + \gamma _2 + \gamma _3)]\\&+\beta \mu (\mu _B-\pi _B)(\sigma +\mu )(\beta +\mu ). \end{aligned}$$

Since \((S_2,\,I_2,\,B_2,\,R_2)\) exists if and only if \(R_0>1\), then, from (59) and (60)\(_1\), it turns out that

$$\begin{aligned} A^{*}>0,\quad A^{*}_1<0. \end{aligned}$$
(61)

In view of (60)\(_2\) and (61), it follows that (24) is always satisfied.

1.4 Proof of Lemma 2

By virtue of Remark 4, the linear stability of the biologically meaningful equilibria guarantees that \(A^*>0\). Hence, the proof of (i) can be obtained on following the same procedure by Rionero (2011a, b), Capone et al. (2013, 2014). As concerns (ii), for the disease-free equilibrium, since \(b_{21}=0\), one has that

$$\begin{aligned} \Phi ^{*}=b_{13}\langle U_1,U_3 \rangle \le \frac{\mu _3^3\beta ^2N^2_0}{2\mu ^2_1K^2_B|I^*A^*|}\Vert U_1\Vert ^2+ \frac{1}{2}|I^*A^*|(\Vert U_2\Vert ^2+\Vert U_3\Vert ^2). \end{aligned}$$

On choosing

$$\begin{aligned} \frac{\mu ^2_3}{\mu ^2_1}= \frac{|b_{11}I^*A^*|K^2_B}{\beta ^2N^2_0}, \end{aligned}$$
(62)

(ii) is obtained. For the endemic equilibrium, since \(b_{21}>0\) and \(b_{13}<0\), on choosing

$$\begin{aligned} \frac{\mu ^2_1}{\mu _2\mu _3}=- \frac{(\sigma +\mu )(\mu _B-\pi _B)(\beta +\mu )}{A_3e\beta \mu (R_0-1) }>0, \end{aligned}$$
(63)

it follows that \(b_{13}-A_3b_{21}=0\) and

$$\begin{aligned} \Phi ^*\!=\! \frac{\mu _1\beta \mu (R_0-1)A_1}{\mu _2(\beta +\mu R_0)} \langle U_1,U_2 \rangle \!\le \! \frac{\mu _1^2\beta ^2\mu ^2(R_0\!-\!1)^2A^2_1}{2|I^*A^*|\mu _2^2(\beta +\mu R_0)^2}\Vert U_1\Vert ^2+ \frac{1}{2}|I^*A^*|\Vert U_2\Vert ^2. \end{aligned}$$

Hence, on taking

$$\begin{aligned} \frac{\mu ^2_1}{\mu ^2_2}= \frac{|b_{11}I^*A^*|(\beta +\mu R_0)^2}{\beta ^2\mu ^2(R_0-1)^2A^2_1}, \end{aligned}$$
(64)

(34) is proved.

As concerns (iii), by virtue of (6), (11), (15)\(_1\), the following inequalities hold a.e. in \(\Omega \)

$$\begin{aligned} \theta _1\mu _1U_1+\bar{S}=\theta _1X_1+\bar{S}=\theta _1(S-\bar{S})+\bar{S}=\theta _1S+(1-\theta _1)\bar{S}\le N_0 \end{aligned}$$

and

$$\begin{aligned} K_B+\theta _1\mu _3U_3+\bar{B}=K_B+\theta _1B+(1-\theta _1)\bar{B}>K_B. \end{aligned}$$

Hence, from (32)\(_7\), it turns out that

$$\begin{aligned} \Phi _2&< \mu _3\left[ c_1 \frac{\mu _3}{\mu _1} \int _{\Omega }|U_1|U^2_3\,d \Omega +c_2 \int _{\Omega }U^2_1|U_3|\,d \Omega \right. \\&\quad +\left. c_3 \frac{\mu _3}{\mu _2} \int _{\Omega }|U_2|U_3^2\,d \Omega +c_4 \frac{\mu _1}{\mu _2} \int _{\Omega }|U_1U_2U_3|\,d \Omega \right. \\&\quad \left. +c_5 \frac{\mu _3}{\mu _2} \int _{\Omega }|U_3|^3\,d \Omega +c_6 \frac{\mu _1}{\mu _2} \int _{\Omega }|U_1|U_3^2\,d \Omega \right] . \end{aligned}$$

From (6), (10) and (15)\(_1\) one obtains

$$\begin{aligned} \Vert U_i\Vert _\infty = \frac{1}{\mu _i}\Vert X_i\Vert _\infty \le \frac{2N_0}{\mu _i},\quad i=1,2 \end{aligned}$$

and

$$\begin{aligned} \Vert U_3\Vert _\infty = \frac{1}{\mu _3}\Vert X_3\Vert _\infty = \frac{1}{\mu _3}\Vert B-\bar{B}\Vert _\infty \le \frac{2M}{\mu _3}. \end{aligned}$$

Hence

$$\begin{aligned} \Phi _2&< \mu _3\left[ \frac{2c_1M}{\mu _1} \int _\Omega |U_1||U_3|d\Omega + \frac{2c_2N_0}{\mu _1} \int _\Omega |U_1||U_3|d\Omega + \frac{2c_3M}{\mu _2} \int _\Omega |U_2||U_3|d\Omega \right. \\&+ \left. \frac{2c_4N_0}{\mu _2} \int _\Omega |U_2||U_3|d\Omega + \frac{2c_5M}{\mu _2} \int _\Omega U^2_3d\Omega + \frac{2c_6N_0}{\mu _2} \int _\Omega U^2_3d\Omega \right] . \end{aligned}$$

On applying the Cauchy–Schwarz, (35) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capone, F., De Cataldis, V. & De Luca, R. Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic. J. Math. Biol. 71, 1107–1131 (2015). https://doi.org/10.1007/s00285-014-0849-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-014-0849-9

Keywords

Mathematics Subject Classification

Navigation