Skip to main content
Log in

Turing instabilities in prey–predator systems with dormancy of predators

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study the stationary and oscillatory Turing instabilities of a homogeneous equilibrium in prey–predator reaction–diffusion systems with dormant phase of predators. We propose a simple criterion which is useful in classifying these Turing instabilities. Moreover, numerical simulations reveal transient spatio-temporal complex patterns which are a mixture of spatially periodic steady states and traveling/standing waves. In this mixture, the steady part is the stable Turing pattern bifurcated primarily from the homogeneous equilibrium, while wave parts are unstable oscillatory solutions bifurcated secondarily from the same homogeneous equilibrium. Although our criterion does not exclude the occurrence of oscillatory Turing instability, we have not yet found stable traveling/standing waves due to oscillatory Turing instability in our simulations. These results suggest that dormancy of predators is not a generator but an enhancer of spatio-temporal Turing patterns in prey–predator reaction–diffusion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Although Turing chemical instabilities occur in reaction–diffusion models, in an ecological context the more proper identifier should be interaction-diffusion models (cf. Cangelosi et al. 2014; Kealy and Wollkind 2012).

References

  • Anma A, Sakamoto K, Yoneda T (2012) Unstable subsystem cause Turing instability. Kodai Math J 35:215–247

    Article  MATH  MathSciNet  Google Scholar 

  • Banerjee M (2010) Self-replication of spatial patterns in a ratio-dependent predator–prey model. Math Comp Model 51:44–52

    Article  MATH  Google Scholar 

  • Baurmann M, Gross T, Feudel U (2007) Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J Theor Biol 245:220–229

    Article  MathSciNet  Google Scholar 

  • Bazykin AD (1998) Nonlinear dynamics of interacting populations. World Scientific, Singapore

    Google Scholar 

  • Bilinsky L, Hadeler KP (2009) Quiescence stabilizes predator–prey relations. J Biol Dyn 3:196–208

    Article  MathSciNet  Google Scholar 

  • Cangelosi RA, Kealy-Dichone BJ, Wollkind DJ, Chaiya I (2014) Nonlinear stability analyses of Turing patterns for a mussel-algae model. J Math Biol (published online)

  • Cohen D, Levin SA (1987) The interaction between dispersal and dormancy strategies in varying and heterogeneous environments. In: Teramoto E, Yamaguchi M (eds) Mathematical topics in population biology, morphogenesis and neurosciences, Proceedings, Kyoto 1985, Lecture Notes in Biomath 71. Springer, pp 110–122

  • Cross GW (1978) Three types of matrix instability. Linear Alg Appl 20:253–263

    Article  MATH  MathSciNet  Google Scholar 

  • Doedel EJ, Champneys AR, Dercole F, Fairgrieve TF, Kuznetsov YA, Oldeman BE, Paffenroth RC, Sandstede B, Wang X, Zhang C (2008) AUTO-07p: continuation and bifurcation software for ordinary differential equations

  • Garvie MR, Maini PK, Trenchea C (2010) An efficient and robust numerical algorithm for estimating parameters in Turing systems. J Comp Phys 229:7058–7071

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllström M, Hansson L-A (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthic–pelagic coupling. Aquat Sci 66:274–295

    Article  Google Scholar 

  • Hairston NG Jr, Van Brunt RA, Kearns CM (1995) Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76:1706–1711

    Article  Google Scholar 

  • Kealy BJ, Wollkind DJ (2012) A nonlinear stability analysis of vegetative Turing pattern formation for an interaction–diffusion plant–surface water model system in an arid flat environment. Bull Math Biol 74:803–833

    Article  MATH  MathSciNet  Google Scholar 

  • Kuwamura M (2005) On the Turing patterns in one-dimensional gradient/skew-gradient dissipative systems. SIAM J Appl Math 65:618–643

    Article  MATH  MathSciNet  Google Scholar 

  • Kuwamura M, Chiba H (2009) Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos 19:043121

    Article  MathSciNet  Google Scholar 

  • Kuwamura M, Nakazawa T (2011) Dormancy of predators dependent on the rate of variation in prey density. SIAM J Appl Math 71:169–179

    Article  MATH  MathSciNet  Google Scholar 

  • Kuwamura M, Nakazawa T, Ogawa T (2009) A minimum model of prey–predator system with dormancy of predators and the paradox of enrichment. J Math Biol 58:459–479

    Article  MathSciNet  Google Scholar 

  • McGehee EA, Peacock-López E (2005) Turing patterns in a modified Lotka–Volterra model. Phys Lett A 342:90–98

    Article  MATH  MathSciNet  Google Scholar 

  • Medvinsky AB, Petrovskii SV, Tikhonova IA, Malchow H, Li B-L (2002) Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev 44:311–370

    Article  MATH  MathSciNet  Google Scholar 

  • Murray JD (1989) Mathematical biology, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Nakazawa T, Kuwamura M, Yamamura N (2011) Implications of resting eggs of zooplankton for the paradox of enrichment. Popul Ecol 53:341–350

    Article  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Rashevsky N (1938) Mathematical biophysics. Univ. of Chicago Press, Chicago

  • Satnoianu RA, Menzinger M, Maini PK (2000) Turing instabilities in general systems. J Math Biol 41:493–512

    Article  MATH  MathSciNet  Google Scholar 

  • Sun G-Q, Jin Z, Li L, Li B-L (2010) Self-organized wave pattern in a predator–prey model. Nonlinear Dyn 60:265–275

    Article  MATH  MathSciNet  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos R Soc B 237:37–72

    Article  Google Scholar 

  • Upadhyaya RK, Volpert V, Thakura NK (2012) Propagation of Turing patterns in a plankton model. J Biol Dyn 6:524–538

    Article  MathSciNet  Google Scholar 

  • Yang L, Dolnik M, Zhabotinsky AM, Epstein IR (2002) Pattern formation arising from interactions between Turing and wave instabilities. J Chem Phys 117:7259–7265

    Article  Google Scholar 

  • Wang L, Li MY (2001) Diffusion-driven instability in reaction–diffusion systems. J Math Anal Appl 254:138–153

    Article  MATH  MathSciNet  Google Scholar 

  • White KAJ, Gilligan CA (1998) Spatial heterogenity in three species, plant–parasite–hyperparasite, systems. Philos Trans R Soc Lond B 353:543–557

    Article  Google Scholar 

Download references

Acknowledgments

The authors express his sincere gratitude to Professor Kunimochi Sakamoto for his useful advice and comments. Moreover, the author would like to appreciate the referees for their useful suggestions and comments, which have improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kuwamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 14266 KB)

Supplementary material 2 (mpg 14172 KB)

Appendices

Appendix A: Proof of Theorem 3.1

Since \(A\) is stable, we have

$$\begin{aligned} \mathrm{tr} A = s'(\bar{u}) - f'(\bar{u})\bar{v} - m'(\bar{v})\bar{v} < 0 \end{aligned}$$
(6.1)

and

$$\begin{aligned} \det A = - (s'(\bar{u}) - f'(\bar{u})\bar{v} ) m'(\bar{v}) \bar{v} + k f(\bar{u}) f'(\bar{u}) \bar{v} > 0. \end{aligned}$$
(6.2)

Let

$$\begin{aligned} \begin{array}{rcl} p_1 &{} := &{} - \mathrm{tr} B,\\ p_2 &{} := &{} \det B_{12} + \det B_{23} + \det B_{13},\\ p_3 &{} := &{} -\det B, \end{array} \end{aligned}$$
(6.3)

and

$$\begin{aligned} B_{12} = \left( \begin{array}{c@{\quad }c} b_{11} &{} b_{12}\\ b_{21} &{} b_{22} \end{array} \right) , \ \ B_{23} = \left( \begin{array}{c@{\quad }c} b_{22} &{} b_{23}\\ b_{32} &{} b_{33} \end{array} \right) , \ \ B_{13} = \left( \begin{array}{c@{\quad }c} b_{11} &{} b_{13}\\ b_{31} &{} b_{33} \end{array} \right) . \end{aligned}$$

Direct calculation shows that

$$\begin{aligned} \begin{array}{rcl} p_1 &{} = &{} - \left( s'(\bar{u}) - f'(\bar{u})\bar{v} - m'(\bar{v})\bar{v} - \alpha (\bar{u}) - k \nu (\bar{w})f(\bar{u}) \right) \\ &{} = &{} - \mathrm{tr} A + \alpha (\bar{u}) + k \nu (\bar{w})f(\bar{u}) > 0 \end{array} \end{aligned}$$
(6.4)

and

$$\begin{aligned} p_3 = \alpha (\bar{u}) \det A > 0 , \end{aligned}$$
(6.5)

by virtue of (6.1) and (6.2). Moreover, we have \( \det B_{13} = - \alpha (\bar{u}) ( s'(\bar{u}) - f'(\bar{u})\bar{v} ), \det B_{23} = \alpha (\bar{u}) m'(\bar{v}) \bar{v} \) and

$$\begin{aligned} \begin{array}{rcl} \det B_{12}&= Y + \alpha '(\bar{u}) \bar{w} f(\bar{u}) , \end{array} \end{aligned}$$

where

$$\begin{aligned} Y = - ( s'(\bar{u}) \!-\! f'(\bar{u})\bar{v} )( k \nu (\bar{u}) f(\bar{u}) \!+\! m'(\bar{v})\bar{v} ) \!+\! k f(\bar{u}) \bar{v} \left( \mu '(\bar{u}) f(\bar{u}) \!+\! \mu (\bar{u})f'(\bar{u}) \right) \nonumber \\ \end{aligned}$$
(6.6)

is independent of \(\alpha (\bar{u})\). Therefore, we have

$$\begin{aligned} \begin{array}{rcl} p_1 p_2 &{} = &{} \left( - { \mathrm tr} A + k \nu (\bar{u}) f(\bar{u}) + \alpha (\bar{u}) \right) \left( - \alpha (\bar{u}) \mathrm{tr} A + Y + \alpha '(\bar{u}) \bar{w} f(\bar{u})\right) \\ &{} > &{} \left( - { \mathrm tr} A + k \nu (\bar{u}) f(\bar{u}) \right) Y + \alpha (\bar{u}) Y \end{array} \end{aligned}$$

by virtue of (6.1) and \( \alpha '(\bar{u}) \ge 0 \). Hence, \(p_1 p_2 - p_3 > 0\) holds for sufficiently small \(\alpha (\bar{u})\) if \(Y > 0\). Noting \(\mu (\bar{u}) + \nu (\bar{u}) = 1\), we have

$$\begin{aligned} Y \!=\!k \mu '(\bar{u})f^2(\bar{u})\bar{v} \!-\! s'(\bar{u}) \left( m'(\bar{v})\bar{v} \!+\! k \nu (\bar{w})f(\bar{u}) \right) \!+\! \left( k f(\bar{u})f'(\bar{u})\bar{v} + m'(\bar{v})\bar{v}^2 f'(\bar{u}) \right) \end{aligned}$$

When \( s'(\bar{u}) \le 0\), we have \(Y >0\). On the other hand, when \( s'(\bar{u}) > 0\), we have \( Y > 0\) under the condition (3.5) because \(\mu (\bar{u}) + \nu (\bar{u}) = 1\). Thus, \(p_1 p_2 - p_3 > 0\) holds for sufficiently small \(\alpha (\bar{u})\) under the condition (3.5). Therefore, it follows from the Routh–Hurwitz condition that \(B\) is stable if \(A\) is stable and (3.5) holds.

Appendix B: Proof of Theorem 3.3

By (Cross 1978, Theorem 4), Turing instability does not occur if and only if \(B\) is strongly stable, i.e., all the signed principal minors of \(B\) are nonnegative. Direct calculations show

$$\begin{aligned} \begin{array}{l} - b_{11} = - ( s'(\bar{u}) - f'(\bar{u})\bar{v} ) , \ \ - b_{22} = k \nu (\bar{u}) f(\bar{u}) + m'(\bar{v}) \bar{v}, \ \ - b_{33} = \alpha (\bar{u}),\\ \det B_{13} = - \alpha (\bar{u}) ( s'(\bar{u}) - f'(\bar{u})\bar{v} ), \ \ \det B_{23} = \alpha (\bar{u}) m'(\bar{v}) \bar{v},\\ \det B_{12} = Y + \alpha '(\bar{u}) \bar{w} f(\bar{u}) , \ \ - \det B = \alpha (\bar{u}) \det A \end{array} \end{aligned}$$

where \(Y\) is given by (6.6). Noting (6.2) and that \(Y \ge 0\) if \( s'(\bar{u}) - f'(\bar{u})\bar{v} \le 0\), we see that \(B\) is strongly stable if and only if \( s'(\bar{u}) - f'(\bar{u})\bar{v} \le 0\).

Appendix C: Proof of Theorem 3.4

Since \(B\) is stable, it follows from the Routh–Hurwitz condition that

$$\begin{aligned}&p_1 > 0,\end{aligned}$$
(8.1)
$$\begin{aligned}&p_3 > 0, \end{aligned}$$
(8.2)

and

$$\begin{aligned} p_1 p_2 - p_3 > 0, \end{aligned}$$
(8.3)

where \(p_1, p_2\) and \(p_3\) are given by (6.3). Notice that (8.1)–(8.3) imply

$$\begin{aligned} p_2 > 0, \end{aligned}$$
(8.4)

which plays a key role in the subsequent analysis.

We analyze the eigenvalue of \( -\sigma D_B + B \), where \(\sigma > 0\) and

$$\begin{aligned} D_B = \left( \begin{array}{c@{\quad }c@{\quad }c} d_u &{} 0 &{} 0\\ 0 &{} d_v &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) . \end{aligned}$$

The characteristic equation of \( -\sigma D_B + B \) is given by

$$\begin{aligned} \lambda ^3 + p_1(\sigma ) \lambda ^2 + p_2(\sigma ) \lambda + p_3(\sigma ) = 0, \end{aligned}$$

where

$$\begin{aligned} \begin{array}{l} p_1(\sigma ) := p_1 + ( d_u + d_v ) \sigma , \ \ p_2(\sigma ) := p_2 - \{ (\mathrm{tr} B_{23} ) d_u + ( \mathrm{tr} B_{13}) d_v \} \sigma + d_u d_v \sigma ^2,\\ p_3(\sigma ) := p_3 + \{ (\det B_{23}) d_u + (\det B_{13} ) d_v \} \sigma + \alpha (\bar{u}) d_u d_v \sigma ^2. \end{array} \end{aligned}$$

Since \(p_1(\sigma ) > 0 \) for all \(\sigma >0\) by (8.1), it is impossible that both \(p_3(\sigma ) = 0\) and \(p_1(\sigma )p_2(\sigma ) - p_3(\sigma ) = 0\) hold due to the assumption of the simplicity of the eigenvalue \(\lambda = \lambda (\sigma , D_B; B)\) (see, Assumption 2.2). Therefore, it follows from the Routh–Hurwitz condition that a pair of complex eigenvalues crosses the imaginary axis and enters into the right half plane if the sign of \(p_1(\sigma )p_2(\sigma ) - p_3(\sigma )\) changes from positive to negative. Let

$$\begin{aligned} \begin{array}{l} F(\sigma ) := p_1(\sigma )p_2(\sigma ) - p_3(\sigma )\\ \ \ \ \ \ \ \ \ = p_1p_2 - p_3 + \{ \left( \det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) \right) d_u\\ \ \ \ \ \ \ \ \ \ \ \ \ \ +\, \left( \det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) \right) d_v \} \sigma \\ \ \ \ \ \ \ \ \ \ \ \ \ \ + \,\{ - (\mathrm{tr} B_{23}) d_u^2 - (\mathrm{tr} B_{13}) d_v^2 - 2(\mathrm{tr} B) d_u d_v \} \sigma ^2\\ \ \ \ \ \ \ \ \ \ \ \ \ \ +\, d_u d_v ( d_u + d_v) \sigma ^3 . \end{array} \end{aligned}$$
(8.5)

Lemma 8.1

When \( m'(\bar{v}) > 0\) and \( s'(\bar{u}) - f'(\bar{u})\bar{v} < \alpha (\bar{u}) \), there exists \(\delta _2 >0\) independent of \(\sigma \) such that \(F(\sigma ) > \delta _2\) holds for all \(\sigma >0 \) and for all \(d_u > 0\).

Proof

Let \(I(d_u)\) and \(J(d_u)\) denote the coefficients of \(\sigma \) and \(\sigma ^2\) in \(F(\sigma )\), respectively, which are given by

$$\begin{aligned} \begin{array}{rcl} I(d_u) &{} = &{} \left( \det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) \right) d_u\\ &{} &{} \ +\, \left( \det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) \right) d_v \end{array} \end{aligned}$$
(8.6)

and

$$\begin{aligned} J(d_u) = - (\mathrm{tr} B_{23}) d_u^2 - (\mathrm{tr} B_{13}) d_v^2 - 2(\mathrm{tr} B) d_u d_v. \end{aligned}$$
(8.7)

We will prove that \(I(d_u) >0 \) and \(J(d_u) >0 \) hold for all \(d_u >0 \). In order to show \(I(d_u) >0 \), we have to prove \(\det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) > 0\) and \(\det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) > 0\). Assume that \(\det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) \le 0\) holds. Then, we have

$$\begin{aligned} XY + Z - \bar{\alpha } X - \bar{\alpha } \bar{\nu } k \bar{f} + ( X+Y - \bar{\alpha } )( Y - \bar{\alpha }) \le 0, \end{aligned}$$

which is equivalent to

$$\begin{aligned} XY + Z - \bar{\alpha } (X + Y) - \bar{\alpha } \bar{\nu } k \bar{f} + ( X+Y )Y - \bar{\alpha } (X + Y ) + \bar{\alpha }^2 \le 0, \end{aligned}$$
(8.8)

where \( X:= - \nu (\bar{u}) k f(\bar{u}) - m'(\bar{v})\bar{v},\,Y:=s'(\bar{u}) - f'(\bar{u})\bar{v},\,Z:= f(\bar{u}) \{ (\mu '(\bar{u})f(\bar{u}) + \mu (\bar{u})f'(\bar{u}) )k \bar{v} + \alpha '(\bar{u})\bar{w} \},\,\bar{\alpha } = \alpha (\bar{u}),\,\bar{\nu } = \nu (\bar{u})\) and \(\bar{f} = f(\bar{u})\). On the other hand, by (6.3) and (8.4), we have

$$\begin{aligned} XY + Z - \bar{\alpha } ( X + Y ) > \bar{\alpha } \bar{\nu } k \bar{f}. \end{aligned}$$
(8.9)

Therefore, it follows from (8.8) and (8.9) that

$$\begin{aligned} \begin{array}{rcl} 0 &{} \ge &{} \bar{\alpha } \bar{\nu } k \bar{f} - \bar{\alpha } \bar{\nu } k \bar{f} + ( X+Y )Y - \bar{\alpha } (X + Y ) + \bar{\alpha }^2\\ &{} = &{} (Y - \bar{\alpha }) ( X + Y ) + \bar{\alpha }^2 , \end{array} \end{aligned}$$

which leads to a contradiction because \( Y < \bar{\alpha } \) and

$$\begin{aligned} X+Y < - m'(\bar{v})\bar{v} + s'(\bar{u}) - f'(\bar{u})\bar{v} < 0 \end{aligned}$$
(8.10)

by virtue of \(0 < \mu (\bar{u}) < 1,\,f(\bar{u}) >0\) and (6.1). Therefore, \(\det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) > 0\). Similarly, we can prove \(\det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) > 0\). Hence, we see that \(I(d_u) > 0\) holds.

Furthermore, we see that \(J(d_u) > 0\) holds because \(\mathrm{tr} B_{23} = X - \bar{\alpha } < 0,\,\mathrm{tr} B_{13} = Y - \bar{\alpha } < 0\), and \(\mathrm{tr} B = -p_1 < 0\) by (8.1).

Thus, noting \(\delta _2 := p_1p_2 -p_3 > 0\) by (8.3), we see that \(F(\sigma ) > \delta _2 \) holds for all \(\sigma >0 \) and for all \(d_u >0 \). \(\square \)

Lemma 8.2

When \( m'(\bar{v}) > 0\) and \(s'(\bar{u}) - f'(\bar{u})\bar{v} > \alpha (\bar{u}) \), there exists \(\delta _3 >0\) independent of \(\sigma \) such that \(F(\sigma ) > \delta _3\) holds for all \(\sigma >0 \) and for \(d_u \ge d^*\), where \(d^*\) is given by (3.7). Moreover, there exists \(\delta _4 >0\) independent of \(\sigma \) such that \(F(\sigma ) < 0\) holds for \( \sigma > \delta _4\) and for \(d_u =0\).

Proof

In order to show the first assertion of this lemma, it suffices to prove that \(I(d_u) >0 \) and \(J(d_u) >0 \) hold for \(d_u \ge d^*\), where \(I(d_u)\) and \(J(d_u)\) are given by (8.6) and (8.7), respectively. First, we will show that \(\det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) > 0\) holds. Assume that \(\det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) \le 0\), i.e.,

$$\begin{aligned} XY + Z - \bar{\alpha } Y + ( X+Y - \bar{\alpha } )( X - \bar{\alpha }) \le 0, \end{aligned}$$
(8.11)

where \(X, Y, Z\) and \(\bar{\alpha }\) are the same notations in the proof of Lemma 8.1. By using the same line of arguments as applied to (8.8), it follows from (8.9) and (8.11) that

$$\begin{aligned} \begin{array}{rcl} 0 &{} \ge &{} \bar{\alpha } \bar{\nu } k \bar{f} - \bar{\alpha }( X + Y ) + X(X+Y) + \bar{\alpha }^2\\ &{} > &{} \bar{\alpha } \bar{\nu } k \bar{f} - \bar{\alpha }( X + Y ) + \bar{\alpha }^2 \end{array} \end{aligned}$$

because \(X < kf(\bar{u}) - m(\bar{v}) < 0\) and \( X + Y < 0\) by (8.10), where \(\bar{\nu }\) and \(\bar{f}\) are the same notations in the proof of Lemma 8.1. Hence, we have \( \bar{\alpha } < X + Y - \bar{\nu } k \bar{f} < 0 \), which contradicts \(\bar{\alpha } > 0\). Therefore, \(\det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) > 0\).

Since \(I(d_u) >0\) holds for all \(d_u > 0\) if \(\det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) \ge 0\), we consider the case that \(\det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) <0\). In this case, \(I(d_u) = 0\) has the positive root \(d_1^*\) given by

$$\begin{aligned} d_1^* = -\displaystyle \frac{ \det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13})}{ \det B_{12} + \det B_{13} + (\mathrm{tr} B)(\mathrm{tr} B_{23}) } d_v > 0 . \end{aligned}$$

We will prove that \( d_1^* \le d^*\) holds. Assume that \( d_1^* > d^*\) holds. Then, noting (3.7) and \(\mu (\bar{u}) + \nu (\bar{u}) = 1\), we have

$$\begin{aligned} \displaystyle \frac{ XY + Z - \bar{\alpha } X - \bar{\alpha } \bar{\nu } k \bar{f} + ( X+Y - \bar{\alpha } )( Y - \bar{\alpha })}{XY + Z - \bar{\alpha } Y + ( X+Y - \bar{\alpha } )( X - \bar{\alpha }) } < \displaystyle \frac{Y}{X + \bar{\nu } k \bar{f} } \ \end{aligned}$$

which implies that

$$\begin{aligned} W ( X - Y ) - \bar{\alpha } \bar{\nu } k \bar{f} X + \{ W + Y(X+Y) - \bar{\alpha } \bar{\nu } k \bar{f} \} \bar{\nu } k \bar{f} > 0, \end{aligned}$$

where \( W := \bar{\alpha }^2 - 2\bar{\alpha } (X+Y) + XY + Z\). On the other hand, by \(\det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) < 0\), we have \(W + Y(X+Y) - \bar{\alpha } \bar{\nu } k \bar{f} < 0\). Therefore, we have \(W(X-Y) - \bar{\alpha } \bar{\nu } k \bar{f} X > 0\). Since \(X- Y < X < 0\) by \(Y > \bar{\alpha } > 0\), we have

$$\begin{aligned} W < \displaystyle \frac{ \bar{\alpha } \bar{\nu } k \bar{f} X }{ X- Y } < \bar{\alpha } \bar{\nu } k \bar{f} , \end{aligned}$$

which implies

$$\begin{aligned} \begin{array}{rcl} \bar{\alpha } \bar{\nu } k \bar{f} &{} > &{} XY + Z - 2 \bar{\alpha } ( X + Y ) + \bar{\alpha }^2\\ &{} = &{} XY + Z - \bar{\alpha } ( X + Y ) - \bar{\alpha }( X + Y ) + \bar{\alpha }^2\\ &{} > &{} \bar{\alpha } \bar{\nu } k \bar{f} - \bar{\alpha } ( X + Y ) + \bar{\alpha }^2 \end{array} \end{aligned}$$

by virtue of (8.9). Hence, we have \( \bar{\alpha } < X + Y < 0\) by (8.10), which contradicts \(\bar{\alpha } >0 \). Thus, we see that \( d_1^* \le d^*\) holds, and hence \(I(d_u) > 0\) holds for \( d_u \ge d^*\).

Next, we will show that \(J(d_u) > 0\) holds for \( d_u \ge d^*\). Since \(\mathrm{tr} B_{23} = X - \bar{\alpha } < 0\) and \(\mathrm{tr} B_{13} = Y - \bar{\alpha } > 0\), we see that \(J(d_u) > 0\) holds for \( d_u > d_2^*\), where \(d_2^*\) is the positive root of \(J(d_u) = 0\). A direct calculation shows

$$\begin{aligned} d_2^* = \displaystyle \frac{ -( X + Y - \bar{\alpha } ) + \sqrt{ ( X - \bar{\alpha } + Y )^2 - ( X-\bar{\alpha } )(Y - \bar{\alpha }) } }{ X -\bar{\alpha } } d_v. \end{aligned}$$

Noting \(X - \bar{\alpha } < 0,\, Y >0\) and \( X + Y - \bar{\alpha } = \mathrm{tr} B = -p_1 < 0 \) by (8.1), we have

$$\begin{aligned} d_2^* = \displaystyle \frac{ Y + \{ X - \bar{\alpha } - \sqrt{ ( X - \bar{\alpha } + Y )^2 - ( X-\bar{\alpha } )(Y - \bar{\alpha }) } \} }{ - ( X -\bar{\alpha } ) } d_v < \displaystyle \frac{ Y }{ -( X - \bar{\alpha } ) } d_v \end{aligned}$$

because

$$\begin{aligned} \begin{array}{l} ( X - \bar{\alpha } + Y )^2 - ( X-\bar{\alpha } )(Y - \bar{\alpha })\\ \ \ \ = ( X-\bar{\alpha } )^2 + ( X + Y - \bar{\alpha } )Y + \bar{\alpha } ( X-\bar{\alpha } ) < ( X-\bar{\alpha } )^2. \end{array} \end{aligned}$$

Since \(X -\bar{\alpha } < X < - m'(\bar{v})\bar{v} < 0 \) by \(0 < \mu (\bar{u}) < 1\), we have \( d_2^* < d^*\), where \(d^*\) is given by (3.7). Thus, we see that \(J(d_u) > 0\) holds for \( d_u \ge d^*\).

The second assertion of this lemma follows from \( \mathrm{tr} B_{13}= Y - \bar{\alpha } > 0\) and

$$\begin{aligned} F(\sigma ) = p_1p_2 - p_3 + \left( \det B_{12} + \det B_{23} + (\mathrm{tr} B)(\mathrm{tr} B_{13}) \right) d_v \sigma - (\mathrm{tr} B_{13}) d_v^2 \sigma ^2 \end{aligned}$$

for \(d_u = 0\). \(\square \)

Remark 6

It should be noted that one cannot skip the proof of the first assertion of Lemma 8.2. For 3-component reaction–diffusion systems, some necessary and sufficient conditions for Turing instability were given by (Cross 1978; Satnoianu et al. 2000; Wang and Li 2001). However, they cannot distinguish the type of Turing instability. On the other hand, (White and Gilligan 1998) gave some necessary conditions for oscillatory Turing instability. To the best of our knowledge, convenient necessary and sufficient conditions for oscillatory Turing instability seem to be unknown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwamura, M. Turing instabilities in prey–predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015). https://doi.org/10.1007/s00285-014-0816-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-014-0816-5

Keywords

Mathematics Subject Classification

Navigation