Skip to main content
Log in

Daphnias: from the individual based model to the large population equation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The class of deterministic ‘Daphnia’ models treated by Diekmann et al. (J Math Biol 61:277–318, 2010) has a long history going back to Nisbet and Gurney (Theor Pop Biol 23:114–135, 1983) and Diekmann et al. (Nieuw Archief voor Wiskunde 4:82–109, 1984). In this note, we formulate the individual based models (IBM) supposedly underlying those deterministic models. The models treat the interaction between a general size-structured consumer population (‘Daphnia’) and an unstructured resource (‘algae’). The discrete, size and age-structured Daphnia population changes through births and deaths of its individuals and through their aging and growth. The birth and death rates depend on the sizes of the individuals and on the concentration of the algae. The latter is supposed to be a continuous variable with a deterministic dynamics that depends on the Daphnia population. In this model setting we prove that when the Daphnia population is large, the stochastic differential equation describing the IBM can be approximated by the delay equation featured in (Diekmann et al., loc. cit.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Champagnat N, Ferriére R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor Pop Biol 69:297–321

    Google Scholar 

  • Champagnat N, Ferriére R, Méléard S (2008) Individual-based probabilistic models of adaptive evolution and various scaling approximations. In: Dalang, R.C., Dozzi, M., Russo, F (eds) Seminar on Stochastic Analysis, Random Fields and Applications V, Centro Stefano Franscini, Ascona, May 2005. Progress in Probability vol. 59, Birkhauser, pp 75–114

  • Diekmann O, Gyllenberg M (2012) Equations with infinite delay: blending the abstract and the concrete. J Diff Equ 252(2):819–851

    Google Scholar 

  • Diekmann O, Metz JAJ (2010) How to lift a model for individual behaviour to the population level? Phil Trans Roy Soc London B 365:3523–3530

    Article  Google Scholar 

  • Diekmann O, Metz JAJ, Kooijman SALM, Heymans HJAM (1984) Continuum population dynamics with an application to Daphnia magna. Nieuw Archief voor Wiskunde 4:82–109

    Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models I Linear theory. J Math Biol 36:349–388

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz JAJ, Thieme HR (2001) On the formulation and analysis of general deterministic structured population models. II. Nonlinear Theory. J Math Biol 43:157–189

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ (2003) Steady state analysis of structured population models. Theor Pop Biol 63:309–338

    Article  MATH  Google Scholar 

  • Diekmann O, Getto P, Gyllenberg M (2007) Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J Math Anal 39(4):1023–1069

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz J, Nakaoka S, de Roos A (2010) Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J Math Biol 61:277–318

    Google Scholar 

  • Durinx M, Metz JAJ, Meszéna G (2008) Adaptive dynamics for physiologically structured models. J Math Biol 56:673–742

    Article  MathSciNet  MATH  Google Scholar 

  • Evans L (1998) Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society

  • Ferriére R, Tran VC (2009) Stochastic and deterministic models for age-structured populations with genetically variable traits. ESAIM: Proceedings 27. pp. 289–310, Proceedings of the CANUM 2008 conference

  • Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4):1880–1919

    Article  MathSciNet  MATH  Google Scholar 

  • Gurney WSC, Nisbet RM (1985) Fluctuation periodicity, generation separation, and the expression of larval competition. Theor Pop Biol 28:150–180

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J, Shiryaev A (1987) Limit Theorems for Stochastic Processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Jagers P, Klebaner F (2000) Population-size-dependent and age-dependent branching processes. Stoch Proc Appl 87:235–254

    Article  MathSciNet  MATH  Google Scholar 

  • Jagers P, Klebaner F (2011) Population-size-dependent, age-structured branching processes linger around their carrying capacity. J Appl Prob 48A: 249–260, special volume: New Frontiers in Applied Probability

  • Joffe A, Métivier M (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv Appl Prob 18:20–65

    Article  MATH  Google Scholar 

  • Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Prob 7:49–58

    Google Scholar 

  • Kurtz TG (1981) Approximation of population Processes. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Méléard S, Metz JAJ, Tran VC (2011) Limiting Feller diffusions for logistic populations with age-structure, 58th World Statistics Congress of the International Statistical Institute (ISI 2011), Dublin Ireland (July 2011). hal-00595928

  • Méléard S, Roelly S (1993) Sur les convergences étroite ou vague de processus à valeurs mesures. CRAcadSciParis, Serie I 317:785–788

    Google Scholar 

  • Méléard S, Tran VC (2009) Trait substitution sequence process and canonical equation for age-structured populations. J Math Biol 58(6):881–921

    Article  MathSciNet  MATH  Google Scholar 

  • Méléard S, Tran VC (2012) Slow and fast scales for superprocess limits of age-structured populations. Stoch Proc Appl 122:250–276

    Article  MATH  Google Scholar 

  • Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin

  • Metz JAJ, de Roos AM (1992) The role of physiologically structured population models within a general individual-based modeling perspective. In: DeAngelis DL, Gross LJ (eds) Individual-based models and approaches in ecology. Routledge, Chapman& Hall, London, pp 88–111

    Google Scholar 

  • Nisbet RM, Gurney WSC (1983) The systematic formulation of populationmodels with dynamically varying instar duration. Theor Pop Biol 23:114–135

    Article  MathSciNet  MATH  Google Scholar 

  • Oelschläger K (1990) Limit theorem for age-structured populations. Ann Prob 18(1):290–318

    Article  MATH  Google Scholar 

  • de Roos A, Metz JAJ, Evers E, Leipoldt A (1990) A size dependent predator-prey interaction: who pursues whom? J Math Biol 28(6):609–643

    Article  MathSciNet  MATH  Google Scholar 

  • Tran VC (2006) Modéles particulaires stochastiques pour des problémes d’évolution adaptative et pour l’approximation de solutions statistiques. PhD thesis, Université Paris X—Nanterre. http://tel.archives-ouvertes.fr/tel-00125100

  • Tran VC (2008) Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: P&S 12:345–386

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work benefitted from the support from the “Chaire Modélisation Mathématique et Biodiversité of Veolia Environnement—Ecole Polytechnique—Museum National d’Histoire Naturelle—Fondation X”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. J. Metz.

Additional information

Dedicated to Odo Diekmann on the occasion of his 65th birthday.

Appendices

Appendix A. Proof of Proposition 2

Let \(f(t,\xi ,a)\) be a function of class \(\mathcal C ^1\). From (7), we obtain

$$\begin{aligned} \langle Z_t,f\rangle&= \sum _{i\in V_0}f(t,\Xi ^i(t ; 0,\bar{Z}_0,S_0),a^i_0+t)+\int \limits _0^t \int \limits _\mathbb{N ^*\times \mathbb R _+} Q(ds,di,d\theta )\ {\small 1}\!\!1_{i\in V_{s_-}}\Big [\nonumber \\&{\small 1}\!\!1_{\theta \le m_1(i,s_-,\bar{Z}_{s_-},S_{s})} \Big (f(t,\Xi (t; s,\xi _0,\bar{Z}_{s}+\delta _{(I_{s_-}+1,\xi _0,0)},S_s),t-s)\nonumber \\&+ \sum _{j\in V_{s_-}}\big (f(t,\Xi ^j(t ; s,\bar{Z}_{s_-}+\delta _{(I_{s_-}+1,\xi _0,0)},S_s),a^j_s+(t-s))\nonumber \\&-f(t,\Xi ^j(t ; s,\bar{Z}_{s_-},S_s),a^j_s+(t-s))\big )\Big )\nonumber \\&+\, {\small 1}\!\!1_{m_1(i,s_-,\bar{Z}_{s_-},S_s)<\theta \le m_2(i,s_-,\bar{Z}_{s_-},S_{s})}\Big (\!-\! f(t,\Xi ^i(t ; s,\bar{Z}_{s_-},S_s),a^i_s\!+\!(t-s))\nonumber \\&+\, \sum _{j\in V_{s_-}, j\not = i}\big (f(t,\Xi ^j(t ; s,\bar{Z}_{s_-}-\delta _{(i,\xi ^i_{s_-},a^i_{s_-})},S_s),a^j_s+(t-s))\nonumber \\&-\, f(t,\Xi ^j(t ; s, \bar{Z}_{s_-},S_s),a^j_s+(t-s))\big ) \Big )\Big ]. \end{aligned}$$
(23)

Using (2), we have for any \(s<t\):

$$\begin{aligned}&f(t,\Xi ^i(t ; s,\bar{Z}_s,S_s),a^i_s+(t-s))\\&\qquad \quad = f(s,\xi ^i_s,a^i_s)+\int \limits _s^t \Big (\frac{\partial f}{\partial u}+\frac{\partial f}{\partial a}(u,\Xi ^i(u ; s,\bar{Z}_s,S_s),a^i_s+u-s)\nonumber \\&\qquad \quad \quad + g(\Xi ^i(u ; s,\bar{Z}_s,S_s),S_u)\frac{\partial f}{\partial x}(u,\Xi ^i(u ; s,\bar{Z}_s,S_s),a^i_s+u-s)\Big )du \end{aligned}$$

Recall that we denoted by \(T_k\), \(k\ge 1\) the birth and death events in the population. By convention, we let \(T_0=0\). Let us consider an individual \(i\). Let \(t_0\in \{T_k, k\ge 0\}\) be the birth time of the individual (or 0 if the individual is alive at time \(0\)) and \(a^i_{t_0}\) be its age at time \(t_0\) (0 if \(t_0\) is the birth time). The sum of the terms in the r.h.s. of (23) associated with individual \(i\) is equal to:

$$\begin{aligned}&f(t_0,\xi ^i_{t_0},a^i_{t_0})+\sum _{k\ge 0} \int \limits _{t\wedge T_k \vee t_0}^{t\wedge T_{k+1} \vee t_0} \Big (\frac{\partial f}{\partial u}+\frac{\partial f}{\partial a}(s,\Xi ^i(s ; T_k,\bar{Z}_{T_k},S_{T_k}),a^i_{t_0}+s-t_0)\\&\quad + g(s,\Xi ^i(s ; T_k,\bar{Z}_{T_k},S_{T_k}),S_s)\frac{\partial f}{\partial x}(s,\Xi ^i(s ; T_k,\bar{Z}_{T_k},S_{T_k}),a^i_{t_0}+s-t_0)\Big )ds\\&\quad -\int \limits _0^t \int \limits _\mathbb{N ^*\times \mathbb R _+} {\small 1}\!\!1_{j=i ; i\in V_{s_-}}{\small 1}\!\!1_{m_1(i,s_-,\bar{Z}_{s_-},S_{s})<\theta \le m_2(i,s_-,\bar{Z}_{s_-},S_{s})}f(s,\xi ^i_{s_-},a^i_{s_-})\Big ]dQ. \end{aligned}$$

The last integral correspond to the death term when individual \(i\) is dead before \(t\). Thus, (23) gives:

$$\begin{aligned}&\langle Z_t,f(t,.,.)\rangle =\sum _{i\in V_0} \Big [f(0,\xi ^i_{0},a^i_{0})+ \sum _{k\ge 0} \int \limits _{t\wedge T_k}^{t\wedge T_{k+1}} \Big (\frac{\partial f}{\partial u}+\frac{\partial f}{\partial a}(s,\Xi ^i(s ; T_k,\bar{Z}_{T_k},S_{T_k}),a^i_{0}+s)\\&\quad + g(s,\Xi ^i(s ; T_k,\bar{Z}_{T_k},S_{T_k}),S_s)\frac{\partial f}{\partial x}(s,\Xi ^i(s ; T_k,\bar{Z}_{T_k},S_{T_k}),a^i_{0}+s)\Big )ds \\&\quad - \int \limits _0^t \int \limits _\mathbb{N ^*\times \mathbb R _+} Q(ds,dj,d\theta ) {\small 1}\!\!1_{j=i}{\small 1}\!\!1_{i\in V_{s_-}}{\small 1}\!\!1_{m_1(i,s_-,\bar{Z}_{s_-},S_{s})<\theta \le m_2(i,s_-,\bar{Z}_{s_-},S_{s})}f(s,\xi ^i_{s_-},a^i_{s_-})\Big ]\\&\quad + \int \limits _0^t \int \limits _\mathbb{N ^*\times \mathbb R _+} Q(ds,di,d\theta )\ {\small 1}\!\!1_{i\in V_{s_-}\setminus V_0}\Big [\Big (f(s,\xi _0,0)\\&\quad +\sum _{k\ge 0} \int \limits _{t\wedge T_k\vee s}^{t\wedge T_{k+1}\vee s} \Big (\frac{\partial f}{\partial u}+\frac{\partial f}{\partial a}(u,\Xi ^{I_{s_-}+1}(u ; T_k,\bar{Z}_{T_k},S_{T_k}),u-s)\\&\quad + g(u,\Xi ^{I_{s_-}+1}(u ; T_k,\bar{Z}_{T_k},S_{T_k}),S_u)\frac{\partial f}{\partial x}(u,\Xi ^{I_{s_-}+1}(u ; T_k,\bar{Z}_{T_k},S_{T_k}),u-s)\Big )du\Big )\\&\quad \times {\small 1}\!\!1_{\theta \le m_1(i,s_-,\bar{Z}_{s_-},S_{s})} - f(s,\xi ^i_{s_-},a){\small 1}\!\!1_{m_1(i,s_-,\bar{Z}_{s_-},S_{s})<\theta \le m_2(i,s_-,\bar{Z}_{s_-},S_{s})}\Big ], \end{aligned}$$

where the first bracket corresponds to individuals alive at time \(0\) and where the second bracket correspond to individuals born after time \(0\). For \(s<u\)

$$\begin{aligned} \sum _{i\in V_{s_-}} \delta _{(\Xi ^i(u ; s,\bar{Z}_s,S_s),a^i_s+u-s)}(d\xi ,da)=Z_u(d\xi ,da) \end{aligned}$$

provided there has been no jumps between \(s\) and \(u\). Thus, we have:

$$\begin{aligned}&\langle Z_t,f(t,.,.)\rangle = \langle Z_0,f(0,.,.)\rangle \\&\qquad + \int \limits _0^t ds \int \limits _\mathbb{R _+^2}Z_s(d\xi ,da) \Big (\frac{\partial f}{\partial s}+\frac{\partial f}{\partial a}(s,\xi ,a)+ g(\xi ,S_s)\frac{\partial f}{\partial \xi }(s,\xi ,a)\Big )\\&\qquad + \int \limits _0^t \int \limits _\mathbb{R _+} \big ( f(s,\xi _0,0) \beta (\xi ,a,S_s)-f(s,\xi ,a)\mu (\xi ,a,S_s)\big )Z_s(d\xi ,da)\\&\qquad + \int \limits _0^t \int \limits _\mathbb{N ^*\times \mathbb R _+}{\small 1}\!\!1_{i\in V_{s_-}}\Big [f(s,\xi _0,0){\small 1}\!\!1_{\theta \le m_1(i,s_-,\bar{Z}_{s_-},S_{s})}\\&\qquad - f(s,\xi ^i_{s_-},a){\small 1}\!\!1_{m_1(i,s_-,\bar{Z}_{s_-},S_{s})<\theta \le m_2(i,s_-,\bar{Z}_{s_-},S_{s})}\Big ] \widetilde{Q}(ds,di,d\theta ), \end{aligned}$$

where \(\widetilde{Q}(ds,di,d\theta )=Q(ds,di,d\theta )-ds\otimes n(di)\otimes d\theta \) is the compensated Poisson point measure associated with \(Q\). The integral with respect to \(\widetilde{Q}(ds,di,d\theta )\) provides the martingale \(M^f\). This achieves the proof. \(\square \)

Appendix B. Sketch of the Proof of Proposition 3

When starting from (11) and using controls of moments as in Fournier and Méléard (2004), the proof is similar to the one in Tran (2008); Tran (2006).

Step 1 We start by noticing that under the Assumption (15), we have the following estimate (e.g. Champagnat et al. 2008):

$$\begin{aligned} \sup _{n\in \mathbb N ^*} \mathbb E \Big (\sup _{t\in [0,T]} \langle Z^n_t, 1\rangle ^2 \Big )<+\infty . \end{aligned}$$
(24)

Moreover, from Assumptions 1 and (5), the size of any individual is bounded on \([0,T]\) by \(\bar{\xi }=\xi _0+\bar{g}T\) and there exists for every \(\varepsilon \) a non random constant \(\bar{S}_\varepsilon \) such that:

$$\begin{aligned} \sup _{n\in \mathbb N ^*}\mathbb P \Big (\sup _{t\in [0,T]}S^n_t>\bar{S}_\varepsilon \Big )<\varepsilon . \end{aligned}$$
(25)

From these estimates and Assumption 1 (ii), there exists a constant \(A_\varepsilon \in (0,A)\) such that:

$$\begin{aligned} \sup _{n\in \mathbb N ^*}\mathbb P \Big (\sup _{t\in [0,T]}Z^n_t\big ([\xi _0,\bar{\xi }]\times [0,A_\varepsilon ]\big )>\varepsilon \Big )<\varepsilon . \end{aligned}$$
(26)

Step 2 It is easy to see that the limiting values of \((Z^n,S^n)_{n\in \mathbb N ^*}\) are necessary continuous. Let us check the \(C\)-tightness (e.g. Jacod and Shiryaev 1987) of \((Z^n,S^n)_{n\in \mathbb N ^*}\) in \(\mathbb D ([0,T],\mathcal{M }_F(\mathbb R _+^2)\times \mathbb R _+)\). Using a criterion by Méléard and Roelly (1993) and given the compact containment that follows from Step 1, it is sufficient to prove the tightness of \((S^n)_{n\in \mathbb N ^*}\) and of the predictable finite variation part and martingale part of \((\langle Z^n,f\rangle )_{n\in \mathbb N ^*}\) for \(f\) in \(\mathcal C _b^1(\mathbb R _+^3,\mathbb R )\) (which contains the constant function equal to 1). This is obtained by using Aldous-Rebolledo criteria (e.g. Joffe and Métivier 1986)) and adapting the arguments of, for instance, Champagnat et al. (2008) and Tran (2008) using the estimates of Step 1.

Step 3 The identification of the martingale problem satisfied by the limiting values provides (16)–(17). Uniqueness of the solution of (16)–(17) stems from the Assumptions 1. As a consequence, there is a unique limiting value and we have convergence in distribution of \((Z^n,S^n)_{n\in \mathbb N ^*}\) to the solution \((\zeta ,\varrho )\). Since the latter is deterministic, the convergence is also a convergence in distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, J.A.J., Tran, V.C. Daphnias: from the individual based model to the large population equation. J. Math. Biol. 66, 915–933 (2013). https://doi.org/10.1007/s00285-012-0619-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0619-5

Keywords

Mathematics Subject Classification (2000)

Navigation