Skip to main content
Log in

Evolutionary stability of ideal free dispersal strategies in patchy environments

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A central question in the study of the evolution of dispersal is what kind of dispersal strategies are evolutionarily stable. Hastings (Theor Pop Biol 24:244–251, 1983) showed that among unconditional dispersal strategies in a spatially heterogeneous but temporally constant environment, the dispersal strategy with no movement is convergent stable. McPeek and Holt’s (Am Nat 140:1010–1027, 1992) work suggested that among conditional dispersal strategies in a spatially heterogeneous but temporally constant environment, an ideal free dispersal strategy, which results in the ideal free distribution for a single species at equilibrium, is evolutionarily stable. We use continuous-time and discrete-space models to determine when the dispersal strategy with no movement is evolutionarily stable and when an ideal free dispersal strategy is evolutionarily stable, both in a spatially heterogeneous but temporally constant environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Apaloo J, Brown JS, Vincent TL (2009) Evolutionary game theory: ESS, convergent stability, and NIS. Evol Ecol Res 11: 489–515

    Google Scholar 

  • Arino J (2009) Diseases in metapopulations. In: Ma Z, Zhou Y, Wu J (eds) Modeling and dynamics of infectious diseases, vol 11. World Scientific, Singapore

    Google Scholar 

  • Averill I, Lou Y, Munther D (2011) On several conjectures from evolution of dispersal, J Biol Dyn (inpress)

  • Bezugly A, Lou Y (2010) Reaction-diffusion models with large advection coefficients. Appl Anal 89: 983–1004

    Article  MathSciNet  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2006) Movement towards better environments and the evolution of rapid diffusion. Math Biosciences 204: 199–214

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, DeAngelis DL, Padrón V (2007a) The ideal free distribution as an evolutionarily stable strategy. J Biol Dyns 1: 249–271

    Article  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2007b) Advection mediated coexistence of competing species. Proc R Soc Edinb 137: 497–518

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2008) Approximating the ideal free distribution via reaction-diffusion-advection equations. J Diff Eqs 245: 3687–3703

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2010) Evolution of dispersal and ideal free distribution. Math Bios Eng 7: 17–36

    Article  MathSciNet  MATH  Google Scholar 

  • Chen XF, Lou Y (2008) Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ Math J 57: 627–658

    Article  MathSciNet  MATH  Google Scholar 

  • Chen XF, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction-diffusion-advection model. J Math Biol 57: 361–386

    Article  MathSciNet  MATH  Google Scholar 

  • Clobert, J, Danchin, E, Dhondt, AA, Nichols, JD (eds) (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Cosner C (2005) A dynamic model for the ideal-free distribution as a partial differential equation. Theor Pop Biol 67: 101–108

    Article  MATH  Google Scholar 

  • Cressman R, Krivan V (2006) Migration dynamics for the ideal free distribution. Am Nat 168: 384–397

    Article  Google Scholar 

  • Cressman R, Krivan V (2010) The ideal free distribution as an evolutionarily stable state in density-dependent population games. Oikos 119: 1231–1242

    Article  Google Scholar 

  • Dieckmann U (1997) Can adaptive dynamics invade?. Trends Ecol Evol 12: 128–131

    Article  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34: 579–612

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O (2003) A beginner’s guide to adaptive dynamics. Banach Center Publ 63: 47–86

    Article  MathSciNet  Google Scholar 

  • Dockery J, Hutson V, Mischaikow K, Pernarowski M (1998) The evolution of slow dispersal rates: a reaction-diffusion model. J Math Biol 37: 61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Eaves B, Hoffman A, Rothblum U, Schneider H (1985) Mathematical Programming Study 25: 124–141

    Article  MathSciNet  MATH  Google Scholar 

  • Evans SN, Ralph P, Schreiber SJ, Sen A (2011) Stochastic population growth in spatially heterogeneous environments (submitted)

  • Fretwell SD, Lucas HL (1970) On territorial behavior and other factors influencing habitat selection in birds. Theor Dev Acta Biotheor 19: 16–36

    Article  Google Scholar 

  • Geritz SAH, Gyllenberg M (2008) The mathematical theory of adaptive dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Geritz SAH, Kisdi E, Meszena G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12: 35–57

    Article  Google Scholar 

  • Hambrock R, Lou Y (2009) The evolution of conditional dispersal strategy in spatially heterogeneous habitats. Bull Math Biol 71: 1793–1817

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings A (1983) Can spatial variation alone lead to selection for dispersal?. Theor Pop Biol 24: 244–251

    Article  MathSciNet  MATH  Google Scholar 

  • Holt RD, Barfield M (2001) On the relationship between the ideal-free distribution and the evolution of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 83–95

    Google Scholar 

  • Holt RD, McPeek MA (1996) Chaotic population dynamics favors the evolution of dispersal. Am Nat 148: 709–718

    Article  Google Scholar 

  • Hutson V, Mischaikow K, Poláčik P (2001) The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol 43: 501–533

    Article  MathSciNet  MATH  Google Scholar 

  • Kirkland S, Li C-K, Schreiber SJ (2006) On the evolution of dispersal in patchy environments. SIAM J Appl Math 66: 1366–1382

    Article  MathSciNet  MATH  Google Scholar 

  • Krivan V, Cressman R, Schneider C (2008) The ideal free distribution: a review and synthesis of the game theoretic perspective. Theor Pop Biol 73: 403–425

    Article  MATH  Google Scholar 

  • Krivan V, Cressman R (2009) On evolutionary stability in predator-prey models with fast behavioural dynamics. Evol Ecol Res 11: 227–251

    Google Scholar 

  • Lam KY (2011a) Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model. J Diff Eqs 250: 161–181

    Article  MATH  Google Scholar 

  • Lam KY (2011b) Limiting profiles of semilinear elliptic equations with large advection in population dynamics II (submitted)

  • Lam KY, Ni WM (2010) Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete Cont Dyn Sys A 28: 1051–1067

    Article  MathSciNet  MATH  Google Scholar 

  • LaSalle J (1960) Some extension of Lyapunov’s second method. IRE Trans Circuit Theory CT-7: 520–527

    MathSciNet  Google Scholar 

  • Lu Z, Wolkowicz GSK (1992) Global dynamics of a mathematical model of competition in the chemostat: general response functions and different death rates. SIAM J Appl Math 52: 222–233

    Article  MathSciNet  MATH  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140: 1010–1027

    Article  Google Scholar 

  • Metz JAJ, Geritz SAH, Meszena G, Jacobs FJA, van Heerwaarden JS (1996) Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien SJ, Lunel SMV (eds) Stochastic and spatial structures of dynamical systems. North Holland, Amsterdam

    Google Scholar 

  • Padrón V, Trevisan MC (2006) Environmentally induced dispersal under heterogeneous logistic growth. Math Biosci 199: 160–174

    Article  MathSciNet  MATH  Google Scholar 

  • Schreiber SJ (2010) Interactive effects of temporal correlations, spatial heterogeneity, and dispersal on population persistence. Proc R Soc Biol Sci 277: 1907–1914

    Article  Google Scholar 

  • Schreiber SJ (2011) Evolution of habitat selection in stochastic environments (submitted)

  • Schreiber SJ, Li CK (2011) Evolution of unconditional dispersal in periodic environments. J Biol Dyn 5: 120–134

    Article  MathSciNet  Google Scholar 

  • Vincent TL, Brown JS (2005) Evolutionary game theory, natural selection and Darwinian dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Vincent TL, MV, Goh BS (1996) Ecological stability, evolutionary stability and the ESS maximum principle. Evol Ecol 10: 567–591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantrell, R.S., Cosner, C. & Lou, Y. Evolutionary stability of ideal free dispersal strategies in patchy environments. J. Math. Biol. 65, 943–965 (2012). https://doi.org/10.1007/s00285-011-0486-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0486-5

Keywords

Mathematics Subject Classification (2000)

Navigation