Skip to main content
Log in

Linking animal movement to site fidelity

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Site fidelity, the recurrent visit of an animal to a previously occupied area is a wide-spread behavior in the animal kingdom. The relevance of site fidelity to territoriality, successful breeding, social associations, optimal foraging and other ecological processes, demands accurate quantification. Here we generalize previous theory that connects site fidelity patterns to random walk parameters within the framework of the space-time fractional diffusion equation. In particular, we describe the site fidelity function in terms of animal movement characteristics via the Lévy exponent, which controls the step-length distribution of the random steps at each turning point, and the waiting time exponent that controls for how long an animal awaits before actually moving. The analytical results obtained will provide a rigorous benchmark for empirically driven studies of animal site fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. In: Applied mathametics series 55, Dover Publications, New York

  • Barraquand F, Benhamou S (2008) Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology 89: 3336–3348

    Article  Google Scholar 

  • Bartumeus F (2007) Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15: 151–162

    Article  Google Scholar 

  • Bartumeus F (2009) Behavioral intermittence, Lévy patterns, and randomness in animal movement. Oikos 118: 488–494

    Google Scholar 

  • Bartumeus F, Giuggioli L, Louzao M, Bretagnolle V, Oro D, Levin SA (2010) Fishery discards impact on seabird movement patterns at regional scales. Curr Biol 20: 215–222

    Article  Google Scholar 

  • Bascompte J, Vilá C (1997) Fractals and search paths in mammals. Landscape Ecol 12: 213–221

    Article  Google Scholar 

  • Bell WJ (1991) Searching behaviour: the behavioural ecology of finding resources, Chapman and Hall animal behaviour series. Springer, Berlin

    Google Scholar 

  • Benhamou S (2007) How many animals really do the Lévy walk?. Ecology 88: 1962–1969

    Article  Google Scholar 

  • Borger L, Dalziel BD, Fryxell JM (2008) Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol Lett 11: 637–650

    Article  Google Scholar 

  • Caputo M (1967) Linear model of dissipation whose Q is almost frequency independent - II. Geophys J R Astr Soc 13: 529–539

    Article  Google Scholar 

  • Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9: 129–136

    Article  Google Scholar 

  • Dalziel BD, Morales JM, Fryxell JM (2008) Fitting probability distributions to animal movement trajectories: using artificial neural networks. Am Nat 172: 248–258

    Article  Google Scholar 

  • Edwards AM et al (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449: 1044–1048

    Article  Google Scholar 

  • Erdélyi, A, Magnus, W, Oberhettinger, F, Tricomi, FG (eds) (1955) Higher Transcendental Function, vol 3. McGraw-Hill, New York

    Google Scholar 

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84: 282–288

    Article  Google Scholar 

  • Franks NR, Richardson TO, Keir S, Inge SJ, Bartumeus F, Sendova-Franks AB (2010) Ant search strategies after interrupted tandem runs. J Exp Biol 213: 1697–1708

    Article  Google Scholar 

  • Franks SA (2009) The common patterns of nature. J Evol Biol 22: 1563–1585

    Article  Google Scholar 

  • Gautestad AO, Mysterud I (2005) Intrinsic scaling complexity in animal dispersion and abundance. Am Nat 165: 44–55

    Article  Google Scholar 

  • Gautestad AO, Mysterud I (2006) Complex animal distribution and abundance from memory-dependent kinetics. Ecol Complex 3: 44–55

    Article  Google Scholar 

  • Germano G, Politi M, Scalas E, Schilling RL (2002) Stochastic calculus for uncoupled continuous-time random walks. Phys Rev E 79:066102/1–12

    Google Scholar 

  • Giuggioli L, Abramson G, Kenkre VM, Parmenter R, Yates T (2006) Theory of home range estimation from displacement measurements of animal populations. J Theor Biol 240: 126–135

    Article  MathSciNet  Google Scholar 

  • Giuggioli L, Sevilla FJ, Kenkre VM (2009) A generalized master equation approach to modelling anomalous transport in animal movement. J Phys A Math Theor 42:434004/1–16

    Google Scholar 

  • Giuggioli L, Bartumeus F (2010) Animal movement, search strategies and behavioural ecology: a cross-disciplinary way forward. J Anim Ecol 79: 906–909

    Google Scholar 

  • Giuggioli L, Potts JR, Harris S (2011) Animal interaction and the emergence of territoriality. PLoS Comput Biol 7(3): e1002008. doi:10.1371/journal.pcbi.1002008

    Article  Google Scholar 

  • Gorenflo R, Luchko Y, Mainardi F (1999) Analytical properties and applications of the wright function. Fract Calc Appl Anal 2: 383–414

    MathSciNet  MATH  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28: 1140–1162

    Article  Google Scholar 

  • Hanyga A (2001) Multi-dimensional solutions of space-fractional diffusion equations. Proc R Soc Lond A 457: 2993–3005

    Article  MathSciNet  MATH  Google Scholar 

  • Hanyga A (2002) Multi-dimensional solutions of space-time-fractional diffusion equations. Proc R Soc Lond A 458: 429–450

    Article  MathSciNet  MATH  Google Scholar 

  • Hilfer R, Anton L (1995) Fractional master equations and fractal time random walks. Phys Rev E 51: 848–851

    Article  Google Scholar 

  • Humston R, Ault JS, Larkin MF, Luo J (2005) Movements and site fidelity of bonefish albula vulpes in the northern florida keys determined by acoustic telemetry. Mar Ecol Prog Ser 291: 237–248

    Article  Google Scholar 

  • Humston R, Olson DB, Ault JS (2004) Behavioural assumptions in models of fish movement and their influence on population dynamics. T Am Fish Soc 133: 1304–1328

    Article  Google Scholar 

  • Kiryakova VS (1994) Generalized fractional calculus and applications. Wiley, New York

    MATH  Google Scholar 

  • Kot M, Lewis M, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77: 2027–2042

    Article  Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59: 253–260

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Article  Google Scholar 

  • Mainardi F, Luchko Y, Pagninin G (2001) The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal 4: 153–192

    MathSciNet  MATH  Google Scholar 

  • Mandelbrot BB (1977) Fractals: form, chance and dimension. WH Freeman and Co

  • Mason TJ, Lowe CG (2010) Home range, habitat use and site fidelity of barred sand bass within a southern california marine protected area. Fish Res 106: 83–101

    Article  Google Scholar 

  • Montroll EW, Weiss G (1965) Random walks on lattices II. J Math Phys 6: 167–181

    Article  MathSciNet  Google Scholar 

  • Oberhettinger F (1974) Tables of Mellin transforms. Springer, Berlin

    Book  MATH  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer, New York

    Google Scholar 

  • Paris R, Kaminsky D (2001) Asymptotics and Mellin-Barnes Integrals. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Plank MJ, James A (2008) Optimal foraging: Lévy pattern or process?. J R Soc Interface 5: 1077–1086

    Article  Google Scholar 

  • Podlubny I (1999) Fractional differential equation. Academic Press, San Diego

    Google Scholar 

  • Reynolds A, Smith AD, Menzel R, Greggers U, Reynolds DR, Riley JR (2007) Displaced honey bees perform optimal scale-free search flights. Ecology 88: 1955–1961

    Article  Google Scholar 

  • Reynolds AM (2008) How many animals really do the lévy walk? Comment. Ecology 89: 2347–2351

    Article  Google Scholar 

  • Sasiela RJ, Shelton JD (1993) Mellin transform methods applied to integral evaluation: Taylor series and asymptotic approximations. J Math Phys 34: 2572–2617

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt KA (2007) Site fidelity in temporally correlated environments enhances population persistence. Ecol Lett 7: 176–184

    Article  Google Scholar 

  • Seshadri V, West BJ (1982) Fractal dimensionality of Lévy processes. Proc Natl Acad Sci USA 79: 4501–4505

    Article  MathSciNet  MATH  Google Scholar 

  • Shlesinger, M, Zaslavsky, G, Frisch, U (eds) (1995) Lévy flights and related topics in physics. Springer, Berlin

    MATH  Google Scholar 

  • Shlesinger M, Zaslavsky G, Klafter J (1993) Strange kinetics. Nature 363: 31–37

    Article  Google Scholar 

  • Sims D et al (2008) Scaling laws of marine predator search behaviour. Nature 451: 1098–1102

    Article  Google Scholar 

  • Switzer PV (1993) Factors affecting site fidelity in a territorial animal, Perithemis tenera. Anim Behav 53: 865–877

    Article  Google Scholar 

  • Switzer PV (1997) Site fidelity in predictable and unpredictable habitats. Evol Ecol 7: 533–555

    Article  Google Scholar 

  • Tremblay Y, Roberts AJ, Costa DP (2007) Fractal landscape method: an alternative approach to measuring area-restricted searching behavior. J Exp Biol 210: 935–945

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401: 911–914

    Article  Google Scholar 

  • Weimerskirch H, Pinaud D, Pawlowski F, Bost C (2007) Does prey capture induce area-restricted search? A fine-scale study using gps in a marine predator, the wandering albatross. Am Nat 170: 734–743

    Article  Google Scholar 

  • Wolf JB, Trillmich F (2007) Beyond habitat requirements: individual fine-scale site fidelity in a colony of the galapagos sea lion (Zalophus wollebaeki) creates conditions for social structuring. Oecologia 152: 553–567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Giuggioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuggioli, L., Bartumeus, F. Linking animal movement to site fidelity. J. Math. Biol. 64, 647–656 (2012). https://doi.org/10.1007/s00285-011-0431-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0431-7

Keywords

Mathematics Subject Classification (2000)

Navigation