Skip to main content

Advertisement

Log in

Diffusion approximations for one-locus multi-allele kin selection, mutation and random drift in group-structured populations: a unifying approach to selection models in population genetics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Diffusion approximations are ascertained from a two-time-scale argument in the case of a group-structured diploid population with scaled viability parameters depending on the individual genotype and the group type at a single multi-allelic locus under recurrent mutation, and applied to the case of random pairwise interactions within groups. The main step consists in proving global and uniform convergence of the distribution of the group types in an infinite population in the absence of selection and mutation, using a coalescent approach. An inclusive fitness formulation with coefficient of relatedness between a focal individual J affecting the reproductive success of an individual I, defined as the expected fraction of genes in I that are identical by descent to one or more genes in J in a neutral infinite population, given that J is allozygous or autozygous, yields the correct selection drift functions. These are analogous to the selection drift functions obtained with pure viability selection in a population with inbreeding. They give the changes of the allele frequencies in an infinite population without mutation that correspond to the replicator equation with fitness matrix expressed as a linear combination of a symmetric matrix for allozygous individuals and a rank-one matrix for autozygous individuals. In the case of no inbreeding, the mean inclusive fitness is a strict Lyapunov function with respect to this deterministic dynamics. Connections are made between dispersal with exact replacement (proportional dispersal), uniform dispersal, and local extinction and recolonization. The timing of dispersal (before or after selection, before or after mating) is shown to have an effect on group competition and the effective population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki K (1982) A condition for group selection to prevail over counteracting individual selection. Evolution 36: 832–842

    Article  Google Scholar 

  • Boorman S, Levitt PR (1973) Group selection on the boundary of a stable population. Theor Popul Biol 4: 85–128

    Article  Google Scholar 

  • Boorman S, Levitt PR (1980) The genetics of altruism. Academic Press, New York

    MATH  Google Scholar 

  • Cherry JL (2003a) Selection in a subdivided population with dominance or local frequency dependence. Genetics 163: 1511–1518

    Google Scholar 

  • Cherry JL (2003b) Selection in a subdivided population with local extinction and recolonization. Genetics 164: 789–795

    Google Scholar 

  • Cherry JL, Wakeley J (2003) A diffusion approximation for selection and drift in a subdivided population. Genetics 163: 421–428

    Google Scholar 

  • Christiansen FB (1975) Hard and soft selection in a subdivided population. Am Nat 109: 11–16

    Article  Google Scholar 

  • Clark AB (1978) Sex ratio and local resource competition in a prosimian primate. Science 201: 163–165

    Article  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    MATH  Google Scholar 

  • Deakin MAB (1966) Sufficient conditions for genetic polymorphism. Am Nat 100: 690–692

    Article  Google Scholar 

  • Eshel I (1972) On the neighbor effect and the evolution of altruistic traits. Theor Popul Biol 3: 258–277

    Article  MathSciNet  Google Scholar 

  • Ethier SN (1976) A class of degenerate diffusion processes occurring in population genetics. Comm Pure Appl Math 29: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  • Ethier SN, Nagylaki T (1980) Diffusion approximations of Markov chains with two time scales and applications to population genetics. Adv Appl Prob 12: 14–49

    Article  MATH  MathSciNet  Google Scholar 

  • Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3: 87–112

    Article  MathSciNet  Google Scholar 

  • Ewens WJ (1989) An interpretation and proof of the fundamental theorem of natural selection. Theor Popul Biol 36: 167–180

    Article  MATH  MathSciNet  Google Scholar 

  • Ewens WJ (2004) Mathematical population genetics, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Gantmacher FR (1959) The theory of matrices, vol 2. Chelsea, New York

    Google Scholar 

  • Gillois M (1965) Relation d’identité en génétique I.—Postulats et axiomes mendéliens. Ann Inst Henri Poincaré B2: 1–94

    MathSciNet  Google Scholar 

  • Grafen A (1985) A geometric view of relatedness. Oxford Surv Evol Biol 2: 28–89

    Google Scholar 

  • Griffiths WJ, Lessard S (2005) Ewens’ sampling formula and related formulae: combinatorial proofs, extensions to variable population size and applications to ages of alleles. Theor Popul Biol 68: 167–177

    Article  MATH  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour I and II. J Theor Biol 7: 1–52

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156: 477–488

    Article  Google Scholar 

  • Hamilton WD (1970) Selfish and spiteful behaviour in an evolutionary model. Nature 228: 1218–1220

    Article  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc 40: 479–519

    Article  MATH  MathSciNet  Google Scholar 

  • Karlin S, Taylor HM (1975) A first course in stochastic processes, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, New York

    MATH  Google Scholar 

  • Karlin S, Matessi C (1983) Kin selection and altruism. Proc R Soc Lond Ser B 219: 327–353

    Article  MATH  Google Scholar 

  • Kimura M (1964) Diffusion models in population genetics. J Appl Prob 1: 177–232

    Article  MATH  Google Scholar 

  • Kimura M (1984) Evolution of an altruistic trait through group selection as studied by the diffusion equation method. IMA J Math Appl Med Biol 1: 1–15

    Article  MATH  MathSciNet  Google Scholar 

  • Kingman JFC (1961) A matrix inequality. Quart J Math 12: 78–80

    Article  MATH  MathSciNet  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Proc Appl 13: 235–248

    Article  MATH  MathSciNet  Google Scholar 

  • Kurtz TG (1975) Semigroups of conditioned shifts and approximation of Markov processes. Ann Prob 3: 618–642

    Article  MATH  MathSciNet  Google Scholar 

  • Lessard S (1992) Relatedness and inclusive fitness with inbreeding. Theor Popul Biol 42: 284–307

    Article  MATH  Google Scholar 

  • Lessard S (1993) Adaptive topography in fertility-viability selection models: an alternative to inclusive fitness in kin selection models. Theor Popul Biol 43: 281–309

    Article  MATH  Google Scholar 

  • Lessard S (1997) Fisher’s fundamental theorem of natural selection revisited. Theor Popul Biol 52: 119–136

    Article  MATH  Google Scholar 

  • Lessard S (2005a) Long-term stability from fixation probabilities in finite populations: New perspectives for ESS theory. Theor Popul Biol 68: 19–27

    Article  MATH  Google Scholar 

  • Lessard S (2005b) Kin selection is implicated in partial sib-mating populations with constant viability differences before mating. Genetics 171: 407–413

    Article  Google Scholar 

  • Lessard S (2007) An exact sampling formula for the Wright–Fisher model and a conjecture about the finite-island model. Genetics 177: 1249–1254

    Article  Google Scholar 

  • Lessard S, Rocheleau G (2004) Kin selection and coefficients of relatedness in family-structured populations with inbreeding. Theor Popul Biol 66: 287–306

    Article  MATH  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87: 311–313

    Article  Google Scholar 

  • Levins R (1970) Extinction. In: Gerstenhaber M(eds) Some mathematical questions in biology. Lectures on Mathematics in the Life Sciences, vol 2. American Mathematical Society, Providence, pp 75–107

    Google Scholar 

  • Lewontin RC (1965) Selection in and of populations. In: Moore JA(eds) Ideas in modern biology. Natural History Press, New York, pp 292–311

    Google Scholar 

  • Malécot G (1946) La consanguinité dans une population limitée. C R Acad Sci Paris 222: 841–843

    MathSciNet  Google Scholar 

  • Maruyama T (1983) Stochastic theory of population genetics. Bull Math Biol 45: 521–554

    MATH  MathSciNet  Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201: 1145–1147

    Article  Google Scholar 

  • Maynard Smith J, Price G (1973) The logic of animal conflicts. Nature 246: 15–18

    Article  Google Scholar 

  • Michod RE, Hamilton WD (1980) Coefficients of relatedness in sociobiology. Nature 288: 694–697

    Article  Google Scholar 

  • Moran PAP (1958) Random processes in genetics. Proc Camb Phil Soc 54: 60–71

    Article  MATH  Google Scholar 

  • Moran PAP (1959) The theory of some genetical effects of population subdivision. Austr J Biol Sci 12: 109–116

    Google Scholar 

  • Nagylaki T (1980) The strong-migration limit in geographically structured populations. J Math Biol 9: 101–114

    Article  MATH  MathSciNet  Google Scholar 

  • Nagylaki T (1987) Evolution under fertility and viability selection. Genetics 115: 367–375

    Google Scholar 

  • Nagylaki T (1989) The diffusion model for migration and selection. In: Hastings A(eds) Some mathematical questions in biology: models in population biology. Lectures on Mathematics in the Life Sciences vol, 20. American Mathematical Society, Providence, pp 55–75

    Google Scholar 

  • Nagylaki T (1996) The diffusion model for migration and selection in a dioecious population. J Math Biol 34: 334–360

    MATH  MathSciNet  Google Scholar 

  • Nagylaki T (1997) The diffusion model for migration and selection in a plant population. J Math Biol 35: 409–431

    Article  MATH  MathSciNet  Google Scholar 

  • Pitman J (1999) Coalescents with multiple collisions. Ann Probab 27: 1870–1902

    Article  MATH  MathSciNet  Google Scholar 

  • Price GR (1970) Selection and covariance. Nature (London) 227: 520–521

    Article  Google Scholar 

  • Price GR (1972) Extension of covariance selection mathematics. Am Hum Genet Lond 35: 485–490

    Article  MathSciNet  Google Scholar 

  • Rousset F (2003) Effective size in simple metapopulation models. Heredity 91: 107–111

    Article  Google Scholar 

  • Rousset F (2006) Separation of time scales, fixation probabilities and convergence to evolutionarily stable states under isolation by distance. Theor Popul Biol 69: 165–179

    Article  MATH  Google Scholar 

  • Rousset F, Billiard S (2000) A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J Evol Biol 13: 814–825

    Article  Google Scholar 

  • Roze D, Rousset F (2003) Selection and drift in subdivided populations: a straightforward method for deriving diffusion approximations and applications involving dominance, selfing and local extinctions. Genetics 165: 2153–2166

    Google Scholar 

  • Roze D, Rousset F (2004) The robustness of Hamilton’s rule with inbreeding and dominance: Kin selection and fixation probabilities under partial sib-mating. Am Nat 164: 214–231

    Article  Google Scholar 

  • Sagitov S (1999) The general coalescent with asynchronous mergers of ancestral lines. J Appl Probab 36: 1116–1125

    Article  MATH  MathSciNet  Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol 12: 253–262

    Article  Google Scholar 

  • Taylor PD (1989) Evolutionary stability in one-parameter models under weak selection. Theor Popul Biol 36: 125–143

    Article  MATH  Google Scholar 

  • Taylor PD, Frank SA (1996) How to make a kin selection model. J Theor Biol 180: 27–37

    Article  Google Scholar 

  • Taylor PD, Irwin AJ, Day T (2000) Inclusive fitness in finite deme-structured and stepping-stone populations. Selection 1: 153–163

    Article  Google Scholar 

  • Taylor PD, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosc 40: 145–156

    Article  MATH  MathSciNet  Google Scholar 

  • Uyenoyama MK, Feldman MW (1980) Theories of kin and group selection: a population genetics perspective. Theor Popul Biol 17: 380–414

    Article  MATH  MathSciNet  Google Scholar 

  • Uyenoyama MK, Feldman MW (1981) On relatedness and adaptive topography in kin selection. Theor Popul Biol 19: 87–123

    Article  MATH  Google Scholar 

  • Uyenoyama MK, Feldman MW, Mueller LD (1981) Population genetic theory of kin selection: multiple alleles at one locus. Proc Natl Acad Sci USA 78: 5036–5040

    Article  MATH  MathSciNet  Google Scholar 

  • Wade MJ (1980) Kin selection: its components. Science 210: 665–667

    Article  MathSciNet  Google Scholar 

  • Wade M, McCauley D (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995–1005

    Article  Google Scholar 

  • Wakeley J (2003) Polymorphism and divergence for island-model species. Genetics 163: 411–420

    Google Scholar 

  • Wakeley J, Aliacar N (2001) Gene genealogies in a metapopulation. Genetics 159: 893–905

    Google Scholar 

  • Wakeley J, Takahashi T (2004) The many-demes limit for selection and drift in a subdivided population. Theor Popul Biol 66: 83–91

    Article  MATH  Google Scholar 

  • Whitlock MC (2003) Fixation probability and time in subdivided populations. Genetics 164: 767–779

    Google Scholar 

  • Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56: 330–338

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159

    Google Scholar 

  • Wright S (1942) Statistical genetics and evolution. Bull Am Math Soc 48: 223–246

    Article  MATH  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28: 114–138

    Google Scholar 

  • Wright S (1970) Random drift and the shifting balance theory of evolution. In: Kojima K(eds) Mathematical topics in population genetics. Springer, Berlin, pp 1–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Lessard.

Additional information

In memory of Sam Karlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessard, S. Diffusion approximations for one-locus multi-allele kin selection, mutation and random drift in group-structured populations: a unifying approach to selection models in population genetics. J. Math. Biol. 59, 659–696 (2009). https://doi.org/10.1007/s00285-008-0248-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0248-1

Keywords

Mathematics Subject Classification (2000)

Navigation