Skip to main content

Advertisement

Log in

Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark–Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen L.J.S., Burgin A.M.: Comparison of deterministic and stochastic SIS and SIR models in discrete-time. Math. Biosci. 163, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allen L.J.S.: Some discrete-time SI, SIR and SIS epidemic models. Math. Biosci. 124, 83–105 (1994)

    Article  MATH  Google Scholar 

  3. Alligood K., Sauer T., Yorke J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  4. Anderson R.M., May R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  5. Bailey N.T.J.: The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London (1975)

    MATH  Google Scholar 

  6. Berezovsky F., Karev C., Song B., Castillo-Chavez C.: A simple model with surprising dynamics. Math. Biosci. Eng. 2, 133–152 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Berezovsky F., Novozhilov S., Karev G.: Population models with singular equilbrium. Math. Biosci. 208, 270–299 (2007)

    Article  MathSciNet  Google Scholar 

  8. Beverton R.J.H., Holt S.J.: On the Dynamics of Exploited Fish Populations. Fish. Invest. Ser. II, H. M. Stationery Office, London (1957)

    Google Scholar 

  9. Castillo-Chavez C., Yakubu A.: Dispersal, disease and life-history evolution. Math. Biosci. 173, 35–53 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Castillo-Chavez C., Yakubu A.: Discrete-time S-I-S models with complex dynamics. Nonlinear Anal. 47, 4753–4762 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castillo-Chavez C., Yakubu A.A.: Intraspecific competition, dispersal and disease dynamics in discrete-time patchy environments. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, A.-A. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction to Models, Methods and Theory, pp. 165–181. Springer, New York (2002)

    Google Scholar 

  12. Cull P.: Local and global stability for population models. Biol. Cybern. 54, 141–149 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elaydi S.N., Yakubu A.-A.: Global stability of cycles: Lotka-Volterra competition model with stocking. J. Difference Equ. Appl. 8, 537–549 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feng Z., Castillo-Chavez C., Capurro A.F.: A model for tuberculosis with exogenous reinfection. Theor. Pop. Biol. 57, 235–247 (2000)

    Article  MATH  Google Scholar 

  15. Franke J.E., Yakubu A.-A.: Population models with periodic recruitment functions and survival rates. J. Difference Equ. Appl. 11, 1169–1184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Franke J.E., Yakubu A.-A.: Discrete-Time SIS Epidemic Model In a Seasonal Environment. SIAM J. Appl. Math. 66(5), 1563–1587 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hadeler K.P., Castillo-Chavez C.: A core group model for disease transmission. Math. Bisoci. 128, 41–55 (1995)

    Article  MATH  Google Scholar 

  18. Hadeler K.P., van den Driessche P.: Backward bifurcation in epidemic control. Math. Biosci. 146, 15–35 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hassell M.P., Lawton J.H., May R.M.: Patterns of dynamical behavior in single species populations. J. Animal Ecol. 45, 471–486 (1976)

    Article  Google Scholar 

  20. Hsu S.-B., Hwang T.-W., Kuang Y.: Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system. J. Math. Biol. 432, 489–506 (2001)

    Article  MathSciNet  Google Scholar 

  21. Hwang T.-W., Kuang Y.: Deterministic extinction effect in parasites on host populations. J. Math. Biol. 46, 17–30 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kermack W.O., McKendrick A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 138, 55–83 (1932)

    Article  MATH  Google Scholar 

  23. Kuang Y., Beretta E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. May R.M., Oster G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–579 (1976)

    Article  Google Scholar 

  25. May R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–469 (1977)

    Article  Google Scholar 

  26. May R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1974)

    Google Scholar 

  27. Nicholson A.J.: Compensatory reactions of populations to stresses, and their evolutionary significance. Aust. J. Zool. 2, 1–65 (1954)

    Article  Google Scholar 

  28. Ricker W.E.: Stock recruitment. J. Fish. Res. Board Canada II 5, 559–623 (1954)

    Google Scholar 

  29. Rios-Soto, K., Castillo-Chavez, C., Neubert, M., Titi, E., Yakubu, A.: Epidemic spread in populations at demographic equilibrium. Contemporary Mathematics, AMS volume 410, Mathematical Studies on Human Disease Dynamic: Emerging Paradigms and Challenges, pp. 297–309 (2006)

  30. Ross R.: The Prevention of Malaria. Murray, London (1911)

    Google Scholar 

  31. Sacker R.S.: A new approach to the perturbation theory of invariant surfaces. Comm. Pure Appl. Math. 18, 717–732 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  32. van den Driessche P., Watmough J.: A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yakubu A.-A.: Allee effects in a discrete-time SIS epidemic model with infected newborns. J. Difference Equ. Appl. 13, 341–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yakubu A.-A., Fogarty M.: Spatially discrete metapopulation models with directional dispersal. Math. Biosci. 204, 68–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Aziz Yakubu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, J.E., Yakubu, AA. Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models. J. Math. Biol. 57, 755–790 (2008). https://doi.org/10.1007/s00285-008-0188-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0188-9

Keywords

Mathematics Subject Classification (2000)

Navigation