Skip to main content
Log in

Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronised generations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

In this paper we develop a general mathematical model describing the spatio-temporal dynamics of host-parasitoid systems with forced generational synchronisation, for example seasonally induced diapause. The model itself may be described as an individual-based stochastic model with the individual movement rules derived from an underlying continuum PDE model. This approach permits direct comparison between the discrete model and the continuum model. The model includes both within-generation and between-generation mechanisms for population regulation and focuses on the interactions between immobile juvenile hosts, adult hosts and adult parasitoids in a two-dimensional domain. These interactions are mediated, as they are in many such host-parasitoid systems, by the presence of a volatile semio-chemical (kairomone) emitted by the hosts or the hosts’ food plant. The model investigates the effects on population dynamics for different host versus parasitoid movement strategies as well as the transient dynamics leading to steady states. Despite some agreement between the individual and continuum models for certain motility parameter ranges, the model dynamics diverge when host and parasitoid motilities are unequal. The individual-based model maintains spatially heterogeneous oscillatory dynamics when the continuum model predicts a homogeneous steady state. We discuss the implications of these results for mechanistic models of phenotype evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambriz, S.J., Strand, M.R., Burkholder, W.E.: Behavioral response of the parasitoid Lariophagus distinguendus (frost) (hymenoptera: Pteromalidae) to extracts from cocoons of Lasioderma serricorne fab. (coleoptera anobiidae) and their effects on subsequent oviposition responses. Biol. Control, 6, 51–56 (1996)

    Google Scholar 

  2. Anderson, A.R.A.: The Role of Structure in Mediating Chemical Gradients and Nematode Movement: Theory and simulation. PhD thesis, University of Dundee, 1996

  3. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60, 857–899 (1998)

    Google Scholar 

  4. Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modelling of tumour invasion and metastasis. J. Theor. Med., 2, 129–154 (2000)

    Google Scholar 

  5. Anderson, A.R.A., Sleeman, B.D., Young, I.M., Griffiths, B.S.: Nematode movement along a chemical gradient in a structural heterogeneous environment. 2. theory. Fundam. Appl. Nematol., 20 (2), 165–172 (1997)

    Google Scholar 

  6. Boerlijst, M.C.: Spirals and spots: Novel evolutionary phenomena through spatial self-structuring. In: U. Dieckmann, R. Law, J.A.J. Metz, (eds.) The Geometry of Ecological Interactions: Simplifying Complexity, pages 171–182. Cambridge University Press, Cambridge, 2000

  7. Cardé, R.T., Bell, W.J.: Chemical Ecology of Insects 2. Chapman Hall, New York, N.Y., 1995

  8. S. Colazza, G. Salerno, and E. Wajnberg. Volatile and contact chemicals released by Nezara viridula (hepteroptera:pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (hymenoptera:scelionidae). Biol. Control, 16:310–317, 1999.

  9. Comins, H.N., Hassell, M.P., May, R.M.: The spatial dynamics of host-parasitoid systems. J. Anim. Ecol., 61, 735–748 (1992)

    Google Scholar 

  10. Cronhjort, M.B.: The interplay between reaction and diffusion. In: U. Dieckmann, R. Law,J.A.J. Metz, (eds.)The Geometry of Ecological Interactions: Simplifying Complexity, pages 151–171. Cambridge University Press, Cambridge, 2000

  11. Doutt, R.L.: The biology of parasitic hymenoptera. Annu. Rev. of Entomo., 1959

  12. Driessen, G., Bernstein, C., van Alphen, J.J.M., Kacelnik, A.: A count-down mechanism for host search in the parasitoid Venturia canescens. J. Anim. Ecol., 64, 117–125 (1995)

    Google Scholar 

  13. Dunbar, S.R.: Travelling wave solutions of diffusive lotka-volterra equations. J. Math. Biol., 17, 11–32 (1983)

    Google Scholar 

  14. Durrett, R., Levin, S.A.: The importance of being discrete (and spatial). Theor. Popul. Biol, 46, 363–394 (1994)

    Google Scholar 

  15. Godfray, H.C.J.: Parasitoids: Behavioural and Evolutionary Ecology. Princeton University Press, Princeton, N.J., 1994

  16. Grindrod, P.: Patterns and Waves. Clarendon Press, Oxford, 1991

  17. Hassell, M.P.: The dynamics of arthropod predator-prey associations. Princeton University Press, Princeton, N.J., 1978

  18. Hassell, M.P.: The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford University Press, Oxford, 2000

  19. Hassell, M.P., May, R.M.: Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol., 43, 567–594 (1974)

    Google Scholar 

  20. Hassell, M.P., Pacala, S.W.: Heterogeneity of host-parasitoid interactions. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 330, 203–220 (1990)

    Google Scholar 

  21. Hochberg, M.E., Ives, A.R.: (eds.) Parasitoid Population Biology. Princeton University Press, Princeton, N.J., 2000

  22. Ives, A.R.: Spatial heterogeneity and host-parasitoid dynamics: do we need to study behavior? Oikos, 74, 366–376 (1995)

  23. Jansen, V.A.A., de Roos, A.M.: The role of space in reducing predator-prey cycles. In U. Dieckmann, R. Law, and J. A. J. Metz, (eds.) The Geometry of Ecological Interactions: Simplifying Complexity, pages 183–201. Cambridge University Press, Cambridge, 2000

  24. Keeling, M.J.: Evolutionary dynamics in spatial host-parasitoid systems. In: U. Dieckmann, R. Law, J.A.J. Metz, (eds.), The Geometry of Ecological Interactions: Simplifying Complexity, pages 271–291. Cambridge University Press, Cambridge, 2000

  25. Keeling, M.J., Rand, D.A.: A spatial mechanism for the evolution and maintenance of sexual reproduction. Oikos, 74 (3), 414–424 (1995)

    Google Scholar 

  26. Kot, M.: Discrete-time travelling waves: Ecological examples. J. Math. Biol., 30, 413–436 (1992)

    Google Scholar 

  27. Leyton, L.: Fluid Behavior in Biological Systems. Clarendon Press, New York, 1975

  28. May, R.M., Hassell, M.P.: The dynamics of multiparasitoid-host interactions. Am. Nat., 117, 234–261 (1980)

    Google Scholar 

  29. May, R.M., Hassell, M.P., Anderson, R.M., Tonkyn, D.W.: Density dependence in host-parasitoid models. J. Anim. Ecol., 50, 855–865 (1981)

    Google Scholar 

  30. Mitchell, A.R., Griffiths, D.F.: The Finite Difference Method in Partial Differential Equations. John Wiley & Sons, Chichester, 1980

  31. Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. B, 39 (3), 283–326 (1977)

    Google Scholar 

  32. Mondor, E., Roland, J.: Host searching and oviposition by Leshenualtia exul, a tachinid parasitoid of the forest tent caterpillar, Malacosoma disstria. J. Insect Behavior, 11 (4), 583–592 (1998)

    Google Scholar 

  33. Murdoch, W.W., Nisbet, R.M., Blythe, S.P., Gurney, W.S.C., Reeve, J.D.: A model for cell movement during dictyostelium mound formation. Am. Nat., 129, 263–282 (1987)

    Google Scholar 

  34. Murray, J.D.: Mathematical Biology. Springer-Verlag, Berlin, 1993

  35. Nowak, M.A., Sigmund, K.: Games on a grid. In: U. Dieckmann, R. Law, J.A.J. Metz, (eds.) The Geometry of Ecological Interactions: Simplifying Complexity, pages 135–150. Cambridge University Press, Cambridge, 2000

  36. Okubo, A.: Diffusion and ecological problems: Mathematical models. Springer-Verlag, Berlin, 1980

  37. Othmer, H.G., Stevens, A.: Aggregation, blowup and collapse: the abc’s of taxis in reinforced random walks. SIAM J. Appl. Math., 57, 1044–1081 (1997)

    Google Scholar 

  38. Peltonen, M., Liebhold, A., Bjornstad, O., Williams, D.: Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal. Ecology, 83(11), 3120–3129 (2002)

    Google Scholar 

  39. Renshaw, E.: Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge, 1991

  40. Rohani, P., Ruxton, G.D.: Dispersal induced instabilities in host-parasitoid metapopulations. Theor. Popul. Biol, 55, 23–36 (1999)

    Google Scholar 

  41. Roland, J.: Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia, 93, 25–30 (1993)

    Google Scholar 

  42. Roland, J., Taylor, P.D.: Insect parasitoid species respond to forest structure at different spatial scales. Nature, 386, 710–713 (1997)

    Google Scholar 

  43. Roland, J., Taylor, P.D., Cooke, B.: Forest structure and the spatial pattern of parasitoid attack. In: A. Watt, N. Stork, M. Hunter, (eds.) Forests and Insects, chapter 7, pages 97–106. Chapmam & Hall, London, 1997

  44. Savill, N.J., Rohani, P., Hogeweg, P.: Self-reinforcing spatial patterns enslave evolution in a host-parasitoid system. J. Theor. Biol., 188, 11–20 (1997)

    Google Scholar 

  45. Schofield, P.G.: Spatio-temporal Mathematical Models for the Investigation of Host- Parasitoid Systems and Wolbachia-infection Dynamics. PhD thesis, University of Dundee, 2002

  46. Schofield, P.G., Chaplain, M.A.J., Hubbard, S.F.: Mathematical modelling of host- parasitoid systems: Effects of chemically mediated parasitoid foraging strategies on within- and between-generation spatio-temporal dynamics. J. Theor. Biol., 214, 31–47 (2002)

    Google Scholar 

  47. Sherratt, J.A., Eagan, B.T., Lewis, M.A.: Oscillations and chaos behind predator-prey invasion: Mathematical artefact or ecological reality? Philos. Trans. R. Soc. Lond. B. Biol. Sci., 352, 21–51 (1997)

    Google Scholar 

  48. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and practice. Oxford University Press, Oxford, 1997

  49. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika, 38, 147–218 (1951)

    Google Scholar 

  50. Vinson, S.B.: Host selection by insect parasitoids. Annu. Rev. Entomol., 21, 109–134 (1976)

    Google Scholar 

  51. White, A., Begon, M., Bowers, R.G.: Host-pathogen systems in a spatially patchy environment. Proc. R. Soc. Lond. B. Biol. Sci., 263, 325–332 (1996)

    Google Scholar 

  52. Wiens, J.A.: The landscape context of dispersal. In: J. Clobert, E. Danchin, A. A. Dhondt, J.D. Nichols, (eds.), Dispersal, pages 96–109. Oxford University Press, Oxford, 2001

  53. Wissel, C.: Grid-based models as a tool for ecological research. In U.Dieckmann, R. Law, J.A.J. Metz, (eds.), The Geometry of Ecological Interactions: Simplifying Complexity, pages 94–115. Cambridge University Press, Cambridge, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Schofield.

Additional information

P. Schofield gratefully acknowledges the financial support of the BBSRC and The Wellcome Trust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schofield, P., Chaplain, M. & Hubbard, S. Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronised generations. J. Math. Biol. 50, 559–583 (2005). https://doi.org/10.1007/s00285-004-0298-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0298-y

Key words or phrases

Navigation