Skip to main content

Advertisement

Log in

Optimal HIV treatment by maximising immune response

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

We present an optimal control model of drug treatment of the human immunodeficiency virus (HIV). Our model is based upon ordinary differential equations that describe the interaction between HIV and the specific immune response as measured by levels of natural killer cells. We establish stability results for the model. We approach the treatment problem by posing it as an optimal control problem in which we maximise the benefit based on levels of healthy CD4+ T cells and immune response cells, less the systemic cost of chemotherapy. We completely characterise the optimal control and compute a numerical solution of the optimality system via analytic continuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaout, R.A., Nowak, M.A., Wodarz, D.: HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proc. Roy. Soc. Lond. B 265, 1347–1354 (2000)

    Article  Google Scholar 

  2. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, NJ, 1988

  3. Ascher, U.M., Spiteri, R.J.: Collocation software for boundary value differential-algebraic equations. SIAM J. Sci. Comput. 15, 938–952 (1994)

    Google Scholar 

  4. Carr, A., Emery, S., Kelleher, A., Law, M., Cooper, D.A.: CD8+ lymphocyte responses to antiviral therapy of HIV infection. J. AIDS Hum. Retrovir. 13, 320–326 (1996)

    Google Scholar 

  5. Cocchi, F., et al.: Identification of RANTES, MIP-1 alpha, MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T-cells. Sci. 270, 1811–1815 (1995)

    Google Scholar 

  6. Culshaw, R.V.: Immune Response Models of HIV Infection and Treatment. Ph.D. thesis, Dalhousie University, 2002

  7. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia, 2002

  8. Fister, K.R., Lenhart, S., McNally, J.S.: Optimizing chemotherapy in an HIV model. Elect. J. Diff. Eqs. 32, 1–12 (1998)

    Google Scholar 

  9. Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control. Springer-Verlag, New York, 1975

  10. Gray, C.M., Lawrence, J., Schapiro, J.M., Altman, J.D., Winters, M.A., Crompton, M., Loi, M., Kundu, S.K., Davis, M.M., Merigan, T.C.: Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individuals receiving highly-active antiretroviral therapy. J. Immunol. 162, 1780–1788 (1999)

    Google Scholar 

  11. Haseltine, W.A., Wong-Staal, F.: The molecular biology of the AIDS virus. Scientific American, Oct. 1988, pp. 52–62

  12. Keller, H.B.: Numerical Solution of Two-Point Boundary Value Problems. Regional Conference Series in Applied Mathematics, No. 24, SIAM, Philadelphia, 1976

  13. Kirschner, D.E., Perelson, A.S.: A model for the immune system response to HIV: AZT treatment studies. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds), Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1: Theory of Epidemics, Wuerz Pub. Ltd., Winnipeg, Canada, 1995, pp. 295–310

  14. Kirschner, D.E., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792 (1997)

    Article  MATH  Google Scholar 

  15. Kirschner, D.E., Webb, G.: A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58, 167–190 (1996)

    Article  Google Scholar 

  16. Kirschner, D.E., Webb, G.: Immunotherapy of HIV-1 Infection. J. Biol. Systems 6, 71–83 (1998)

    Article  MATH  Google Scholar 

  17. Kirschner, D.E., Webb, G., Cloyd, M.: Model of HIV-1 disease progression based on virus-induced lymph node homing and homing-induced apoptosis of CD4+ lymphocytes. J. AIDS 24, 352–362 (2000)

    Google Scholar 

  18. Klach, A.M.: Lippincott’s Nursing Drug Guide 2001. Lippincott, Williams and Wilkins, 2001

  19. Murray, J.D.: Mathematical Biology, Springer-Verlag, Berlin-Heidelberg, 1989

  20. Musey, L., et al.: Cytotoxic T cell responses, viral load and disease progression in early HIV-type 1 infection. N. Engl. J. Med. 337, 1267–1274 (1997)

    Article  Google Scholar 

  21. Nowak, M.A., May, R.M.: Mathematical biology of HIV infections: Antigenic variation and diversity threshold. Math. Biosci. 106, 1–21 (1991)

    Article  MATH  Google Scholar 

  22. Ogg, G.S., et al.: Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J. Virol. 73, 797–800 (1999)

    Google Scholar 

  23. Perelson, A.S., Kirschner, D.E., DeBoer, R.: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81–125 (1993)

    Article  MATH  Google Scholar 

  24. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    MATH  Google Scholar 

  25. Spouge, J.L., Shrager, R.I., Dimitrov, D.S.: HIV-1 infection kinetics in tissue cultures. Math. Biosci. 138, 1–22 (1996)

    Article  MATH  Google Scholar 

  26. Walker, C.M., Moody, D.T., Stites, D.P., Levy, J.A.: CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Sci. 234, 1563–1566 (1986)

    Google Scholar 

  27. Weber, J.N., Weiss, R.A.: HIV infection: The cellular picture. Scientific American, Oct. 1988, pp. 101–109

  28. Wein, L.M., Zenios, S.A., Nowak, M.A.: Dynamic multidrug therapies for HIV: A control theoretic approach. J. Theor. Biol. 185, 15–29 (1997)

    Article  Google Scholar 

  29. Wodarz, D., Klenerman, P., Nowak, M.A.: Dynamics of cytotoxic T-lymphocyte exhaustion. Proc. Roy. Soc. Lond. B 265, 191–203 (1998)

    Article  Google Scholar 

  30. Wodarz, D., Nowak, M.: Specific therapies could lead to long-term immunological control of HIV. Proc. Natl. Acad. Sci. 96, 464–469 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca V. Culshaw.

Additional information

Research supported by the Natural Science and Engineering Research Council (NSERC) and the Mathematics of Information Technology and Complex Systems (MITACS) of Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culshaw, R., Ruan, S. & Spiteri, R. Optimal HIV treatment by maximising immune response. J. Math. Biol. 48, 545–562 (2004). https://doi.org/10.1007/s00285-003-0245-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0245-3

Keywords

Navigation