Skip to main content
Log in

Isolation and Screening of Zn (Zn) Solubilizing Rhizosphere Bacteria from Different Vegetations for Their Ability to Improve Growth, Zn Uptake, and Expression of Zn Transporter Genes in Tomato

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Zinc-solubilizing bacteria (ZSB) can convert insoluble zinc to an accessible form and increase Zn bioavailability in soil, which helps mitigate Zn deficiency in crops. In this study, different bacterial strains were screened for different Zn solubilization and plant growth promotion traits. Two bacterial strains, Acinetobacter pittii DJ55 and Stenotrophomonas maltophilia DJ24, were tested for their Zn-solubilizing potential on plate media, and both showed variable levels of Zn solubilization. The results showed that the bacterial strains applied to the plants in the pot experiment caused improvements in growth parameters compared to control conditions. DJ55, when applied with an insoluble source, enhanced plant height, leaf number, and leaf area compared to DJ24 and control conditions, while the maximum fruit weight was noticed in plants treated with ZnSO4. An increase in chlorophyll contents was noted in plants treated with ZnSO4, while maximum carotenoid contents were observed in plants treated with DJ55 + ZnO when compared with their controls. Plants supplemented with ZnO and DJ55 showed higher zinc content and iron content as compared to their respective controls. The expression patterns of the SLZIP5 and SLZIP4 genes were changed in the root and shoot. Application of ZnO stimulates both gene expression and protein synthesis in tomato roots and shoots. Inoculation of tomato plants with ZSB and insoluble ZnO reduced the expression of the SLZIP5 and SLZIP4 genes in the root and shoot. In conclusion, both strains can be considered as potential zinc-solubilizing bioinoculants to promote the growth and production yield of tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available at https://www.ncbi.nlm.nih.gov/nuccore/OR335752.1?report=GenBank, https://www.ncbi.nlm.nih.gov/nuccore/OR335753.1?report=GenBank.

Code Availability

Not applicable.

References

  1. Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M (2022) Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci 13:927535. https://doi.org/10.3389/fpls.2022.927535

    Article  PubMed  PubMed Central  Google Scholar 

  2. Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI (2021) Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 203:5859–5885. https://doi.org/10.1007/s00203-021-02576-0

    Article  PubMed  CAS  Google Scholar 

  3. Mohamed HI, Sofy MR, Almoneafy AA, Abdelhamid MT, Basit A, Sofy AR, Leno R, Abou-El-Enain MM (2021) Role of microorganisms in managing soil fertility and plant nutrition in sustainable agriculture. In: Mohamed HI, El-Beltagi HEDS, Abd-Elsalam KA (eds) Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham

    Chapter  Google Scholar 

  4. Gilbert K, Mburu SW, Awino R, Njeru EM, Maingi JM (2021) Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front Sustaina Food Syst. https://doi.org/10.3389/fsufs.2021.606308

    Article  Google Scholar 

  5. Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G (2022) Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front Plant Sci 13:930340. https://doi.org/10.3389/fpls.2022.930340

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kanchan V, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A (2020) Revisiting plant-microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2020.560406

    Article  Google Scholar 

  7. El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res 28:67608–67631. https://doi.org/10.1007/s11356-021-15382-4

    Article  CAS  Google Scholar 

  8. Stanton C, Sanders D, Krämer U, Podar D (2021) Zn in plants: integrating homeostasis and biofortification. Mol Plant 15(1):65–85. https://doi.org/10.1016/j.molp.2021.12.008

    Article  PubMed  CAS  Google Scholar 

  9. Zeng H, Wu H, Yan F, Yi K, Zhu Y (2021) Molecular regulation of Zn deficiency responses in plants. J Plant Physiol 261:153419. https://doi.org/10.1016/j.jplph.2021.153419

    Article  PubMed  CAS  Google Scholar 

  10. Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hung 68:101–114. https://doi.org/10.1556/018.68.2017.1.9

    Article  PubMed  CAS  Google Scholar 

  11. Athukorala AD (2021) Solubilization of micronutrients using indigenous microorganisms. In: Bhatt P, Gangola S, Udayanga D, Kumar G (eds) Microbial technology for sustainable environment. Springer, Singapore

    Google Scholar 

  12. Selvaraj K, Dananjeyan B (2016) Expression of Zn transporter genes in rice as influenced by Zn-solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci 7:446. https://doi.org/10.3389/fpls.2016.00446

    Article  Google Scholar 

  13. Mahala DM, Maheshwari HS, Yadav RK, Prabina BJ, Bharti A, Reddy KK et al (2020) Microbial transformation of nutrients in soil: an overview. In: Sharma SK, Singh UB, Sahu P, Singh HV, Sharma PK (eds) Rhizosphere microbes: microorganisms for sustainability. Springer, Singapore

    Google Scholar 

  14. Upadhayay VK, Singh AV, Khan A, Sharma A (2022) Contemplating the role of zinc-solubilizing bacteria in crop biofortification: an approach for sustainable bioeconomy. Front Agronomy 4:903321. https://doi.org/10.3389/fagro.2022.903321

    Article  Google Scholar 

  15. Jha Y, Mohamed HI (2023) Enhancement of disease resistance, growth potential, and biochemical markers in maize plants by inoculation with plant growth-promoting bacteria under biotic stress. J Plant Pathol 105:729–748. https://doi.org/10.1007/s42161-023-01338-9

    Article  Google Scholar 

  16. Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8. https://doi.org/10.1016/j.ejsobi.2016.06.006

    Article  CAS  Google Scholar 

  17. Vincent JM, Humphrey B (1970) Taxonomically significant group antigens in Rhizobium. Microbiology 63(3):379–382. https://doi.org/10.1099/00221287-63-3-379

    Article  CAS  Google Scholar 

  18. Bergey DH (1994) Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins

    Google Scholar 

  19. Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU et al (2019) Isolation, characterization, and effect of phosphate-Zn-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci 26(5):1061–1067. https://doi.org/10.1016/j.sjbs.2019.04.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Khan SI, Zada NS, Sahinkaya M, Colak DN, Ahmed S, Hasan F, Belduz AO, Çanakçi S, Khan S, Badshah M (2021) Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5. Enzyme Micro Technol 151:109917. https://doi.org/10.1016/j.enzmictec.2021.109917

    Article  CAS  Google Scholar 

  21. Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of Zn solubilizing bacteria in growth promotion and Zn content of wheat. Front Microbiol 181(8):2593. https://doi.org/10.3389/fmicb.2017.02593

    Article  Google Scholar 

  22. Shar G, Kazi T, Jakhrani M, Sahito S (2002) Determination of iron, zinc and manganese in nine varieties of wheat (Triticum aestivum L.) and wheat flour by using atomic absorption spectrophotometer. Asian J Plant Sci 1:208–209. https://doi.org/10.3923/ajps.2002.208.209

    Article  Google Scholar 

  23. Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 22(31):606X

    Google Scholar 

  24. Portillo M, Fenoll C, Escobar C (2006) Evaluation of different RNA extraction methods for small quantities of plant tissue: combined effects of reagent type and homogenization procedure on RNA quality-integrity and yield. Physiol Plant 128(1):1–7. https://doi.org/10.1111/j.1399-3054.2006.00716.x

    Article  CAS  Google Scholar 

  25. Prommana P, Uthaipibull C, Wongsombat C, Kamchonwongpaisan S, Yuthavong Y, Knuepfer E, Holder AA, Shaw PJ (2013) Inducible knockdown of plasmodium gene expression using the glmS ribozyme. PLoS ONE 8(8):e73783. https://doi.org/10.1371/journal.pone.0073783

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  26. Aslam N, Khan AA, Cheema HMN, Sadia B (2020) Transcript profiling of ZIP genes to unzip their role in Zn assimilation in Solanum lycopersicum (L.). Pakistan J Agri Sci 57(2):413

    Google Scholar 

  27. Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335(1):133–154. https://doi.org/10.1007/s11104-009-0228-2

    Article  CAS  Google Scholar 

  28. Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MG (2006) Large expression differences in genes for Fe and Zn homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142(3):1127–1147. https://doi.org/10.1104/pp.106.082073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pfeiffer WH, McClafferty B (2007) Harvest plus: breeding crops for better nutrition. Crop Sci. https://doi.org/10.2135/cropsci2007.09.0020IPBS

    Article  Google Scholar 

  30. Hussain A, Zahir ZA, Asghar HN, Imran M, Ahmad M, Hussain S (2020) Integrating the potential of Bacillus sp. Az6 and organic waste for Zn oxide bio-activation to improve growth, yield and Zn content of maize grains. Pak J Agri Sci 57(1):120–128

    Google Scholar 

  31. Kandil EE, El-Banna AAA, Tabl DM, Mackled MI, Ghareeb RY, Al-Huqail AA, Ali HM, Jebril J, Abdelsalam NR (2022) Zinc Nutrition responses to agronomic and yield traits, kernel quality, and pollen viability in rice (Oryza sativa L.). Front Plant Sci 13:791066. https://doi.org/10.3389/fpls.2022.791066

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kamalakannan S, Manikandan R, Haripriya K, Sudhagar R, Kumar S (2019) Effect of Zn sulphate, Zn solubilizing bacteria and vesicular arbuscular mycorrhizae on growth attributes of okra (Abelmoschus esculentus L. Moench.). Plant Arch 19(2):3053–3056

    Google Scholar 

  33. Fatima I, Jamil M, Hussain A, Mumtaz MZ, Luqman M, Hussain S, Kashif S, Ahmad M (2018) Zn solubilizing Bacillus sp. ZM20 and Bacillus aryabhattai ZM31 promoted the productivity in Okra (Abelmoschus esculentus L.). Biologia 64(12):179–185

    Google Scholar 

  34. Srithaworn M, Jaroenthanyakorn J, Tangjitjaroenkun J, Suriyachadkun C, Chunhachart O (2023) Zinc solubilizing bacteria and their potential as bioinoculant for growth promotion of green soybean (Glycine max L. Merr.). PeerJ 11:e15128. https://doi.org/10.7717/peerj.15128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jha Y, Mohamed HI (2023) Inoculation with Lysinibacillus fusiformis strain YJ4 and Lysinibacillus sphaericus strain YJ5 alleviates the effects of cold stress in maize plants. Gesunde Pflanz 75:77–95. https://doi.org/10.1007/s10343-022-00666-7

    Article  CAS  Google Scholar 

  36. Kumawat N, Kumar R, Kumar S, Meena VS (2017) Nutrient solubilizing microbes (NSMs): its role in sustainable crop production. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore

    Google Scholar 

  37. Vidyashree D, Muthuraju R, Panneerselvam P (2018) Evaluation of Zn solubilizing bacterial (ZSB) strains on growth, yield and quality of tomato (Lycopersicon esculentum). Int J Curr Microbiol Appl Sci 7(04):1493–1502. https://doi.org/10.20546/ijcmas.2018.704.168

    Article  CAS  Google Scholar 

  38. Matse DT, Huang CH, Huang YM, Yen MY (2020) Effects of co inoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J Plant Nutri 43(5):739–752. https://doi.org/10.1080/01904167.2019.1702205

    Article  CAS  Google Scholar 

  39. Khande R, Sharma SK, Ramesh A, Sharma MP (2017) Zn solubilizing Bacillus strains that modulate growth, yield and Zn biofortification of soybean and wheat. Rhizosphere 4(8):126–138. https://doi.org/10.1016/j.rhisph.2017.09.002

    Article  Google Scholar 

  40. Oburger E, Kirk GJ, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41(3):449–457. https://doi.org/10.1016/j.soilbio.2008.10.034

    Article  CAS  Google Scholar 

  41. Sinclair SA, Krämer U (2012) The Zn homeostasis network of land plants. Biochim et Biophy Acta Mol Cell Res 1823(9):1553–1567. https://doi.org/10.1016/j.bbamcr.2012.05.016

    Article  CAS  Google Scholar 

  42. Chen W, Feng Y, Chao Y (2008) Genomic analysis and expression pattern of OsZIP1, OsZIP3 and OsZIP4 in two rice (Oryza sativa L.) genotypes with different Zn efficiency. Russ J Plant Physiol 55(3):400–409. https://doi.org/10.1134/S1021443708030175

    Article  ADS  CAS  Google Scholar 

  43. Jha Y, Yadav KA, Mohamed HI (2023) Plant growth-promoting bacteria and exogenous phytohormones alleviate the adverse effects of drought stress in pigeon pea plants. Plant Soil. https://doi.org/10.1007/s11104-023-06155-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Pakistan for providing support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AR, MAA, SM, AR, AI, BA, MU, MA, HIM, and IU contributed toward conceptualization, methodology, formal analysis, investigation, writing original draft preparation, writing review, and editing.

Corresponding authors

Correspondence to Mian Afaq Ahmad or Heba I. Mohamed.

Ethics declarations

Competing Interests

Authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 375 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Ahmad, M.A., Mehmood, S. et al. Isolation and Screening of Zn (Zn) Solubilizing Rhizosphere Bacteria from Different Vegetations for Their Ability to Improve Growth, Zn Uptake, and Expression of Zn Transporter Genes in Tomato. Curr Microbiol 81, 83 (2024). https://doi.org/10.1007/s00284-023-03610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03610-8

Navigation