Skip to main content

Advertisement

Log in

First Report on Novel Psychrotrophic Phosphorus-Solubilizing Ochrobactrum thiophenivorans EU-KL94 from Keylong Region in Great Himalayas and Their Role in Plant Growth Promotion of Oats (Avena sativa L.)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cold stress leads to the disruption of the cellular homeostasis in plants and generation of reactive oxygen species (ROS) and productivity losses. In the present study, 94 psychrotrophic phosphorus-solubilizing bacteria with multiple plant growth-promoting (PGP) capabilities were isolated from rhizosphere of wheat. The most efficient strain EU-KL94 showing highest amount of solubilized phosphorus and maximum number of PGP attributes was identified using 16S rRNA sequencing as Ochrobactrum thiophenivorans. Ochrobactrum thiophenivorans EU-KL94 along with recommended doses of the chemical fertilizers as controls were used for alleviation of cold stress in oats. The strain improved the root and shoot length, dry and fresh weight, proline, glycine betaine, chlorophyll content as well as the superoxide dismutase (SOD) and glutathione reductase (GR) activities of oats under cold stress conditions. Ochrobactrum thiophenivorans with all promising plant growth activities under cold stress could be used as an environmental friendly strategy for mitigation of low temperature stress. To the best of our knowledge, Ochrobactrum thiophenivorans has been reported for the first time as P-solubilizer and as bioinoculants in oats for cold stress mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta SM, Ahmed Z (2010) Sea buckthorn (Hippophae salicifolia L.) plant: as source donor of cold tolerant genes for improving high altitude agriculture during cold stress. Res Environ Life Sci 3(3):105–112

    Google Scholar 

  2. Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56(3):238–245. https://doi.org/10.1111/jpi.12115

    Article  CAS  PubMed  Google Scholar 

  3. Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27(10):1048–1059. https://doi.org/10.1002/bies.20307

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126(1):90–96. https://doi.org/10.1111/j.1399-3054.2006.00622.x

    Article  CAS  Google Scholar 

  5. Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14(1):69–79. https://doi.org/10.1007/s12298-008-0006-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN (2022) Himalayan microbiomes for agro-environmental sustainability: current perspectives and future challenges. Microbial Ecol 84(4):643–675. https://doi.org/10.1007/s00248-021-01849-x

    Article  CAS  Google Scholar 

  7. Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49(3):433–442. https://doi.org/10.1093/pcp/pcn020

    Article  CAS  PubMed  Google Scholar 

  8. Sindhu M, Malik K, Sangwan S, Rana A, Tara N, Ahlawat S (2020) Alleviation of cold stress by psychrotrophic microbes. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore, pp 179–198. https://doi.org/10.1007/978-981-15-3204-7_8

    Chapter  Google Scholar 

  9. Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  10. Yadav AN, Yadav N, Sachan SG, Saxena AK (2019) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7(04):99–108. https://doi.org/10.7324/JABB.2019.70415

    Article  Google Scholar 

  11. Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  12. Zubair M, Hanif A, Farzand A, Sheikh TMM, Khan AR, Suleman M, Ayaz M, Gao X (2019) Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms 7(9):337. https://doi.org/10.3390/microorganisms7090337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kour D, Yadav AN (2023) Alleviation of cold stress in wheat with psychrotrophic phosphorus solubilizing Acinetobacter rhizosphaerae EU-KL44. Braz J Microbiol 54(1):371–383. https://doi.org/10.1007/s42770-023-00913-7

    Article  CAS  PubMed  Google Scholar 

  14. Goyal M, Kaur N (2018) Low temperature induced oxidative stress tolerance in oats (Avena sativa L.) genotypes. Indian J Plant Physiol 23(2):316–324. https://doi.org/10.1007/s40502-018-0371-y

    Article  CAS  Google Scholar 

  15. Singh R, De S, Belkheir A (2013) Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview. Crit Rev Food Sci Nutr 53(2):126–144. https://doi.org/10.1080/10408398.2010.526725

    Article  CAS  PubMed  Google Scholar 

  16. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58. https://doi.org/10.1002/jobm.201500459

    Article  CAS  PubMed  Google Scholar 

  17. Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  18. Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang. China World J Microbiol Biotechnol 22(9):983–990. https://doi.org/10.1007/s11274-006-9144-2

    Article  CAS  Google Scholar 

  19. Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian J Microbiol 35(1–2):121–125. https://doi.org/10.1590/S1517-83822004000100020

    Article  CAS  Google Scholar 

  20. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538. https://doi.org/10.1128/aem.57.2.535-538.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  22. Cappucino JC, Sherman N (1992) Nitrogen cycle. In: Cappucino JC, Sherman N (eds) Microbiology: a laboratory manual, 4th edn. Benjamin/Cumming Pub. Co., New York, pp 311–312

    Google Scholar 

  23. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457. https://doi.org/10.1016/0038-0717(87)90037-X

    Article  CAS  Google Scholar 

  24. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  25. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of North Western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  27. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  28. Grieve C, Grattan S (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2):303–307. https://doi.org/10.1007/BF02374789

    Article  CAS  Google Scholar 

  29. Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Planta 84(1):55–60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x

    Article  CAS  Google Scholar 

  30. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  31. Sairam R (1994) Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594–594

    Google Scholar 

  32. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101. https://doi.org/10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  33. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175(2):408–413. https://doi.org/10.1016/0003-2697(88)90564-7

    Article  CAS  PubMed  Google Scholar 

  34. Fadiji AE, Yadav AN, Santoyo G, Babalola OO (2023) Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res 271:127368. https://doi.org/10.1016/j.micres.2023.127368

    Article  CAS  Google Scholar 

  35. Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere. 31(1):43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

    Article  CAS  Google Scholar 

  36. Ducousso-Détrez A, Fontaine J, Lounès-Hadj Sahraoui A, Hijri M (2022) Diversity of phosphate chemical forms in soils and their contributions on soil microbial community structure changes. Microorganisms 10(3):609. https://doi.org/10.3390/microorganisms10030609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26(7):1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  38. Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54(5):408–417. https://doi.org/10.1002/jobm.201200579

    Article  CAS  PubMed  Google Scholar 

  39. Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm Bio Sci 6(1):333–343

    Google Scholar 

  40. Turan M, Güllüce M, Çakmak R, Şahin F (2013) Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J Plant Nutr 36(5):731–748. https://doi.org/10.1080/01904167.2012.754038

    Article  CAS  Google Scholar 

  41. Kang SM, Khan AL, Waqas M, You YH, Hamayun M, Joo GJ, Shahzad R, Choi KS, Lee IJ (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. European J of Soil Biol 68:85–93. https://doi.org/10.1016/j.ejsobi.2015.02.005

    Article  CAS  Google Scholar 

  42. Berova M, Zlatev Z, Stoeva N (2002) Effect of paclobutrazol on wheat seedlings under low temperature stress. Bulg J Plant Physiol 28(1–2):75–84

    CAS  Google Scholar 

  43. Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319. https://doi.org/10.1139/A10-014

    Article  CAS  Google Scholar 

  44. Dikilitas M, Simsek E, Roychoudhury A (2020) Role of proline and glycine betaine in overcoming abiotic stresses. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress. Wiley, New York, pp 1–23. https://doi.org/10.1002/9781119552154.ch1

    Chapter  Google Scholar 

  45. Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18(4):257–266. https://doi.org/10.1016/j.ejbt.2015.04.002

    Article  Google Scholar 

  46. Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8(4):179–187. https://doi.org/10.1016/S1360-1385(03)00047-5

    Article  CAS  PubMed  Google Scholar 

  47. Mishra PK, Bisht SC, Bisht JK, Bhatt JC (2012) Cold-Tolerant PGPRs as bioinoculants for stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 95–118. https://doi.org/10.1007/978-3-642-23465-1_6

    Chapter  Google Scholar 

  48. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  49. Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Trop Plant Res 3(1):105–111

    Google Scholar 

  50. Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. https://doi.org/10.1093/aobpla/plw055

    Article  PubMed  PubMed Central  Google Scholar 

  51. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Del Rio LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35(2):281–295. https://doi.org/10.1111/j.1365-3040.2011.02310.x

    Article  CAS  PubMed  Google Scholar 

  52. del Río LA, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 1–26. https://doi.org/10.1007/978-3-319-75088-0_1

    Chapter  Google Scholar 

  53. Tiryaki D, Aydın İ, Atıcı Ö (2019) Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86:111–119. https://doi.org/10.1016/j.cryobiol.2018.11.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the Department of Environment, Science & Technology (DEST), Shimla funded project “Development of Microbial Consortium as Bio-inoculants for Drought and Low Temperature Growing Crops for Organic Farming in Himachal Pradesh” for providing the facilities and financial support, to undertake the investigations.

Author information

Authors and Affiliations

Authors

Contributions

ANY conceived the original idea and DK carried out the experimental part and wrote the manuscript.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, D., Yadav, A.N. First Report on Novel Psychrotrophic Phosphorus-Solubilizing Ochrobactrum thiophenivorans EU-KL94 from Keylong Region in Great Himalayas and Their Role in Plant Growth Promotion of Oats (Avena sativa L.). Curr Microbiol 80, 227 (2023). https://doi.org/10.1007/s00284-023-03308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03308-x

Navigation