Skip to main content
Log in

Mutation of rpoS is Beneficial for Suppressing Organic Acid Secretion During 1,3-Propandiol Biosynthesis in Klebsiella pneumoniae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, to reduce the formation of organic acid during 1,3-propanediol biosynthesis in Klebsiella pneumoniae, a method combining UV mutagenesis and high-throughput screening with pH color plates was employed to obtain K. pneumoniae mutants. When compared with the parent strain, the total organic acid formation by the mutant decreased, whereas 1,3-propanediol biosynthesis increased after 24 h anaerobic shake flask culture. Subsequently, genetic changes in the mutant were analyzed by whole-genome sequencing and verified by signal gene deletion. Mutation of the rpoS gene was confirmed to contribute to the regulation of organic acid synthesis in K. pneumoniae. Besides, rpoS deletion eliminated the formation of 2,3-butanediol, the main byproduct produced during 1,3-propanediol fermentation, indicating the role of rpoS in metabolic regulation in K. pneumoniae. Thus, a K. pneumoniae mutant was developed, which could produce lower organic acid during 1,3-propanediol fermentation due to an rpoS mutation in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1,3-PD:

1,3-Propanediol

2,3-BD:

2, 3-Butanediol

Ace:

Acetate

Suc:

Succinate

3-HP:

3-Hydroxypropionic acid

Pyr:

Pyruvate

α-KG:

α-Ketoglutarate

HPLC:

High-performance liquid chromatography

References

  1. Jun SA, Moon C, Kang CH, Kong SW, Sang BI, Um Y (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161:491–501

    Article  CAS  Google Scholar 

  2. Wang XL, Zhou JJ, Shen JT, Zheng YF, Sun YQ, Xiu ZL (2020) Sequential fed-batch fermentation of 1,3-propanediol from glycerol by Clostridium butyricum DL07. Appl Microbiol Biotechnol 104:9179–9191

    Article  CAS  Google Scholar 

  3. Li Y, Zhu S, Ge X (2019) Co-production of 1,3-Propanediol and 2,3-Butanediol from waste Lard by Co-cultivation of Pseudomonas alcaligenes and Klebsiella pneumoniae. Curr Microbiol 76:415–424

    Article  CAS  Google Scholar 

  4. Zhou S, Lama S, Sankaranarayanan M, Park S (2019) Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol. Bioresour Technol 292:121933

    Article  CAS  Google Scholar 

  5. Chen WC, Chuang CJ, Chang JS, Wang LF, Soo PC, Wu HS, Tsai SL, Wei YH (2020) Exploring dual-substrate cultivation strategy of 1,3-propanediol production using Klebsiella pneumoniae. Appl Biochem Biotechnol 191:346–359

    Article  Google Scholar 

  6. Zhang AH, Zhu KY, Zhuang XY, Liao LX, Huang SY, Yao CY, Fang BS (2020) A robust soft sensor to monitor 1,3-propanediol fermentation process by Clostridium butyricum based on artificial neural network. Biotechnol Bioeng

  7. Lee JH, Jung MY, Oh MK (2018) High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol Biofuels 11:104

    Article  Google Scholar 

  8. Kumar V, Park S (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36:150–167

    Article  CAS  Google Scholar 

  9. Rathnasingh C, Park JM, Kim DK, Song H, Chang YK (2016) Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnol Lett 38:975–982

    Article  CAS  Google Scholar 

  10. Su M, Li Y, Ge X, Tian P (2015) 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol Lett 37:717–724

    Article  CAS  Google Scholar 

  11. Zhang L, Bao W, Wei R, Fu S, Gong H (2018) Inactivating NADH:quinone oxidoreductases affects the growth and metabolism of Klebsiella pneumoniae. Biotechnol Appl Biochem 65:857–864

    Article  Google Scholar 

  12. Guo XW, Zhang YH, Cao CH, Shen T, Wu MY, Chen YF, Zhang CY, Xiao DG (2014) Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae. Biotechnol Appl Biochem 61:707–715

    Article  CAS  Google Scholar 

  13. Xu D, Jia Z, Zhang L, Fu S, Gong H (2020) Analysis of the growth and metabolites of a pyruvate dehydrogenase complex- deficient klebsiella pneumoniae mutant in a glycerol-based medium. J Microbiol Biotechnol 30:753–761

    Article  CAS  Google Scholar 

  14. Wang M, Wang G, Zhang T, Fan L, Tan T (2017) Multi-modular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate. Appl Microbiol Biotechnol 101:647–657

    Article  CAS  Google Scholar 

  15. Guo X, Fang H, Zhuge B, Zong H, Song J, Zhuge J, Du X (2013) budC knockout in Klebsiella pneumoniae for bioconversion from glycerol to 1,3-propanediol. Biotechnol Appl Biochem 60:557–563

    Article  CAS  Google Scholar 

  16. Zhou J, Wang D, Wang C, Gu J, Kim CH, Shi J, Jiang B, Wang M, Hao J (2017) The role of the pyruvate acetyl-CoA switch in the production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 181:1199–1210

    Article  CAS  Google Scholar 

  17. Zhu C, Jiang X, Zhang Y, Lin J, Fu S, Gong H (2015) Improvement of 1,3-propanediol production in Klebsiella pneumoniae by moderate expression of puuC (encoding an aldehyde dehydrogenase). Biotechnol Lett 37:1783–1790

    Article  CAS  Google Scholar 

  18. Ko Y, Seol E, Sundara Sekar B, Kwon S, Lee J, Park S (2017) Metabolic engineering of Klebsiella pneumoniae J2B for co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Reduction of acetate and other by-products. Bioresour Technol 244:1096–1103

    Article  CAS  Google Scholar 

  19. Lu X, Fu X, Zong H, Zhuge B (2016) Overexpressions of xylA and xylB in Klebsiella pneumoniae lead to enhanced 1,3-propanediol production by cofermentation of glycerol and xylose. J Microbiol Biotechnol 26:1252–1258

    Article  CAS  Google Scholar 

  20. Luo LH, Seo JW, Heo SY, Oh BR, Kim DH, Kim CH (2013) Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol. Bioprocess Biosyst Eng 36:1319–1326

    Article  CAS  Google Scholar 

  21. Luo LH, Kim CH, Heo SY, Oh BR, Hong WK, Kim S, Kim DH, Seo JW (2012) Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae. Bioresour Technol 103:1–6

    Article  CAS  Google Scholar 

  22. Jiang W, Li W, Hong Y, Wang S, Fang B (2016) Cloning, expression, mutagenesis library construction of glycerol dehydratase, and binding mode simulation of its reactivase with ligands. Appl Biochem Biotechnol 178:739–752

    Article  CAS  Google Scholar 

  23. Lin J, Zhang Y, Xu D, Xiang G, Jia Z, Fu S, Gong H (2016) Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl Microbiol Biotechnol 100:2775–2784

    Article  CAS  Google Scholar 

  24. Rahman MS, Xu CC, Ma K, Nanda M, Qin W (2017) High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int J Biol Sci 13:308–318

    Article  CAS  Google Scholar 

  25. Zhang C, Shen H, Zhang X, Yu X, Wang H, Xiao S, Wang J, Zhao ZK (2016) Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol Lett 38:1733–1738

    Article  CAS  Google Scholar 

  26. Jin HX, OuYang XK, Hu ZC (2017) Enhancement of epoxide hydrolase production by (60) Co gamma and UV irradiation mutagenesis of Aspergillus niger ZJB-09103. Biotechnol Appl Biochem 64:392–399

    Article  CAS  Google Scholar 

  27. Zhu Z, Wu X, Lv B, Wu G, Wang J, Jiang W, Li P, He J, Chen J, Chen M et al (2016) A new approach for breeding low-temperature-resistant Volvariella volvacea strains: Genome shuffling in edible fungi. Biotechnol Appl Biochem 63:605–615

    Article  CAS  Google Scholar 

  28. Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, Heping L, Xing X (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 8:e77046

    Article  CAS  Google Scholar 

  29. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  30. Bao W, Wei R, Liu X, Dong S, Chen T, Fu S, Gong H (2020) Regulation of pyruvate formate lyase-deficient klebsiella pneumoniae for efficient 1,3-propanediol bioproduction. Curr Microbiol 77:55–61

    Article  CAS  Google Scholar 

  31. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  Google Scholar 

  32. Wong GT, Bonocora RP, Schep AN, Beeler SM, Lee Fong AJ, Shull LM, Batachari LE, Dillon M, Evans C, Becker CJ et al (2017). Genome-wide transcriptional response to varying RpoS levels in Escherichia coli K-12. J Bacteriol 199

  33. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  CAS  Google Scholar 

  34. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  Google Scholar 

  35. Seo JH, Hong JS, Kim D, Cho BK, Huang TW, Tsai SF, Palsson BO, Charusanti P (2012) Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its transcriptional architecture and regulatory features. BMC Genomics 13:679

    Article  CAS  Google Scholar 

  36. Hengge-Aronis R (2002). Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66: 373–395, table of contents.

  37. Muffler A, Traulsen DD, Lange R, Hengge-Aronis R (1996) Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli. J Bacteriol 178:1607–1613

    Article  CAS  Google Scholar 

  38. Lee IS, Lin J, Hall HK, Bearson B, Foster JW (1995) The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol 17:155–167

    Article  CAS  Google Scholar 

  39. Schellhorn HE (2014) Elucidating the function of the RpoS regulon. Future Microbiol 9:497–507

    Article  CAS  Google Scholar 

  40. Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genom 272:580–591

    Article  CAS  Google Scholar 

  41. Dong T, Schellhorn HE (2009) Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 10:349

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant No. 31271862.

Author information

Authors and Affiliations

Authors

Contributions

SD carried out the experimental work, statistical analysis, and drafting of the manuscript. K. pneumoniae KG2 strain was isolated by TC, SL, and XL, XZ participated in the design of the experiment. HG contributed to the design and supervision of the study and also the editing of the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Heng Gong.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical Approval

This article does not contain any work done on human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Liu, X., Chen, T. et al. Mutation of rpoS is Beneficial for Suppressing Organic Acid Secretion During 1,3-Propandiol Biosynthesis in Klebsiella pneumoniae. Curr Microbiol 79, 218 (2022). https://doi.org/10.1007/s00284-022-02901-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02901-w

Navigation