Skip to main content
Log in

Buttiauxella massiliensis sp. nov., Isolated from a Human Bone Infection

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Strain Marseille-P9829 was isolated from a bone sample collected from an open right fibula fracture from a 46-years old patient. Strain Marseille-P9829 (= CSUR P9829 = DSM 110695) was a Gram-negative, non-spore-forming and non-motile bacterium. This strain had a positive catalase activity but was oxidase-negative. The major fatty acids methyl esters were hexadecanoic acid (45.6%) and 9-hexadecenoic acid (28.4%). Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry analysis suggested that this strain belongs to the species Buttiauxella gaviniae. Since there were few reports of clinical infections with this species in humans, whole genome sequencing was performed and a polyphasic taxono-genomic approach was followed in order to verify the classification of strain Marseille-P9829. The 16S rRNA gene sequence BLAST against the NCBI database yielded the highest similarity of 99.8% with Buttiauxella agrestis, suggesting that strain Marseille-P9829 belongs to this species. However, genomic comparison by digital DNA–DNA hybridization showed that values between strain Marseille-P9829 and other validly published Buttiauxella species were all lower than 70%. Furthermore, all average nucleotide identities were lower than 95–96%. Therefore, these results confirmed that strain Marseille-P9829 belonged to a new Buttiauxella species for which we propose the name Buttiauxella massiliensis sp. nov., with strain Marseille-P9829 as type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequence and genome sequence of strain Marseille-P9829 are deposited in GenBank under accession numbers MZ061590 and CABVOV000000000, respectively.

References

  1. Ferragut C, Izard D, Gavini F et al (1981) Buttiauxella, a new genus of the family Enterobacteraceae. Zbl Bakt Mik Hyg I C 2:33–44. https://doi.org/10.1016/S0721-9571(81)80016-6

    Article  Google Scholar 

  2. Müller HE, Brenner DJ, Fanning GR et al (1996) Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. nov., Buttiauxella noackiae sp. nov., Buttiauxella warmboldiae sp. nov., Kluyvera cochleae sp. nov., and Kluyvera georgiana sp. nov. Int J Syst Bacteriol 46:50–63. https://doi.org/10.1099/00207713-46-1-50

    Article  PubMed  Google Scholar 

  3. Kämpfer P, Meyer S, Müller HE (1997) Characterization of Buttiauxella and Kluyvera species by analysis of whole cell fatty acid patterns. Syst Appl Microbiol 20:566–571. https://doi.org/10.1016/S0723-2020(97)80028-8

    Article  Google Scholar 

  4. Antonello VS, Dallé J, Domingues GC et al (2014) Post-cesarean surgical site infection due to Buttiauxella agrestis. Int J Infect Dis 22:65–66. https://doi.org/10.1016/j.ijid.2014.01.025

    Article  PubMed  Google Scholar 

  5. De Baere T, Wauters G, Kämpfer P et al (2002) Isolation of Buttiauxella gaviniae from a spinal cord patient with urinary bladder pathology. J Clin Microbiol 40:3867–3870. https://doi.org/10.1128/jcm.40.10.3867-3870.2002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lagier J-C, Khelaifia S, Azhar EI et al (2015) Genome sequence of Oceanobacillus picturae strain S1, an halophilic bacterium first isolated in human gut. Stand Genom Sci. https://doi.org/10.1186/s40793-015-0081-2

    Article  Google Scholar 

  7. Sasser M (2006) Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME)

  8. Dione N, Sankar SA, Lagier J-C et al (2016) Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes and New Infect 10:66–76. https://doi.org/10.1016/j.nmni.2016.01.002

    Article  CAS  Google Scholar 

  9. Anani H, Abdallah RA, Khoder M et al (2019) Colibacter massiliensis gen. nov. sp. Nov., a novel Gram-stain-positive anaerobic diplococcal bacterium, isolated from the human left colon. Sci Rep 9:17199. https://doi.org/10.1038/s41598-019-53791-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zgheib R, Anani H, Raoult D, Fournier P-E (2020) Draft Genome Sequence of Salirhabdus euzebyi Strain Q1438. Microbiol Resour Announc 9:e00246-e320. https://doi.org/10.1128/MRA.00246-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hyatt D, Chen G-L, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laslett D (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  16. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. https://doi.org/10.1093/nar/28.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee I, Ouk Kim Y, Park S-C, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Bacteriol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  Google Scholar 

  20. Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furlan JPR, Braz VS, Paschoal JAR, Stehling EG (2018) Buttiauxella chrysanthemi sp. nov., isolated from a chrysanthemum plantation in Brazil. Arch Microbiol 200:1365–1369. https://doi.org/10.1007/s00203-018-1548-5

    Article  CAS  PubMed  Google Scholar 

  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Takashi Irie, Kyoko Imai, Shigeki Matsubara, Taku Sakazume, Yusuke Ominami, Hisada Akiko and the Hitachi team of Japan (Hitachi High-Technologies Corporation, Science & Medical Systems Business Group 24-14, Nishi-shimbashi 1-chome, Minato-ku, Tokyo 105-8717 Japan) for the collaborative study conducted together with IHU Méditerranée Infection, and for the installation of a SU5000 microscope at IHU Méditerranée Infection facility.

Funding

This work was supported by Méditerranée Infection and the National Research Agency under the program “Investissements d’avenir”, reference ANR-10-IAHU-03 and Region Provence Alpes Côte d’Azur and European funding FEDER IHUBIOTK.

Author information

Authors and Affiliations

Authors

Contributions

RZ, HA and IH performed the phylogenomic analysis and drafted the manuscript. Phenotypic and biochemical tests were performed by BM. GH performed scanning electron microscopy. NA and CC performed the fatty acid analyses. AC handled data deposition in GenBank. DR, FF and PEF conceived, designed and supervised the study. All authors participated in writing the final version of the manuscript.

Corresponding author

Correspondence to Pierre-Edouard Fournier.

Ethics declarations

Conflict of interest

From March 2018 to March 2021, Pr. Raoult was scientific advisor for the Hitachi High-Tech Corporation for the application of electron microscopy to routine clinical microbiology. The authors declare no other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zgheib, R., Hasni, I., Mbaye, B. et al. Buttiauxella massiliensis sp. nov., Isolated from a Human Bone Infection. Curr Microbiol 79, 41 (2022). https://doi.org/10.1007/s00284-021-02714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02714-3

Navigation