Skip to main content
Log in

Influence of Symbiotic Probiont Strains on the Growth of Amphora and Chlorella and Its Potential Protections Against Vibrio spp. in Artemia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The emerging aquaculture industry is in need of non-antibiotic-based disease control approaches to minimize the risk of antibiotic-resistant bacteria. Bacterial infections mainly caused by Vibrio spp. have caused mass mortalities of fish especially during the larval stages. The objectives of this study were to verify the potential of symbiotic probiont strains, isolated from microalgae (Amphora, Chlorella, and Spirulina) for suppressing the growth of Vibrio spp. and at the same time ascertain their abilities to enhance microalgal biomass by mutualistic interactions through microalgae–bacteria symbiosis. In addition, in vivo studies on Artemia bioencapsulated with probiont strains (single strain and mix strains) and microalgae were evaluated. The selected potential probionts were identified as Lysinibacillus fusiformis strain A-1 (LFA-1), Bacillus sp. strain A-2 (BA-2), Lysinibacillus fusiformis strain Cl-3 (LFCl-3), and Bacillus pocheonensis strain S-2 (BPS-2) using 16s rRNA. The cell densities of Amphora culture supplemented with BA-2 and Chlorella culture supplemented with LFCl-3 were higher than those of the controls. Artemia bioencapsulated with mix strains (LFA-1 + BA-2 + LFCl-3 + BPS-2) and Amphora demonstrated the highest survival rate compared to the controls, after being challenged with V. harveyi (60 ± 4%) and V. parahaemolyticus (78 ± 2%). Our study postulated that BA-2 and LFCl-3 were found to be good promoting bacteria for microalgal growth and microalgae serve as a vector to transport probiotic into Artemia. Moreover, mixture of potential probionts is beneficial for Artemia supplementation in conferring protection to Artemia nauplii against pathogenic Vibrios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang L, Li H, Lu Q, Zhou W (2021) Emerging trends of culturing microalgae for fish-rearing environment protection. J Chem Technol Biotechnol 96(1):31–37

    Article  CAS  Google Scholar 

  2. Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27(8):1737–1746. https://doi.org/10.1007/s11274-010-0632-z

    Article  Google Scholar 

  3. Aji LP (2011) The use of algae concentrates, dried algae and algal substitutes to feed bivalves. Makara J Sci 15(1):1–8. https://doi.org/10.7454/mss.v15i1.868

    Article  Google Scholar 

  4. Wang W, Sun J, Liu C, Xue Z (2017) Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquac Res 48:1–23. https://doi.org/10.1111/are.13161

    Article  Google Scholar 

  5. Planas M, Vázquez JA and Novoa B (2015) Stimulative effect of lactic acid bacteria in the growth of the microalgae Isochrysis galbana. J Coastal Life Med 3(12):925–930. http://hdl.handle.net/10261/128455

  6. Tandon P, Jin Q (2017) Microalgae culture enhancement through key microbial approaches. Renew Sustain Energy Rev 80:1089–1099. https://doi.org/10.1016/j.rser.2017.05.260

    Article  CAS  Google Scholar 

  7. Rivas MO, Vargas P, Riquelme CE (2010) Interactions of Botryococcus braunii cultures with bacterial biofilms. Microbial Ecol 60:628–635. https://doi.org/10.1007/s00248-010-9686-6

    Article  CAS  Google Scholar 

  8. Tanabe Y, Okazaki Y, Yoshida M, Matsuura H, Kai A, Shiratori T, Watanabe MM (2015) A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii. Nature. 5:10467. https://www.nature.com/articles/srep10467

  9. Park J, Park BS, Wang P, Patidar SK, Kim JH, Kim SH, Han MS (2017) Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction. Front Plant Sci 8:289. https://doi.org/10.3389/fpls.2017.00289

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg 69:95–105. https://doi.org/10.1016/j.biombioe.2014.07.015

    Article  CAS  Google Scholar 

  11. De-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez JP, Bashan Y (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolite (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization). Algal Res 15:179–186. https://doi.org/10.1016/j.algal.2016.02.019

    Article  Google Scholar 

  12. Verschuere L, Heang H, Criel G, Sorgeloos P, Verstraete W (2000) Selected bacterial strains protect Artemia spp from the pathogenic effects of Vibrio proteolyticus CW8T2. Appl Environ Microbiol 66(3):1139–1146. https://doi.org/10.1128/AEM.66.3.1139-1146.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Villamil L, Tafalla C, Figueras A, Novoa B (2002) Evaluation of immunomodulatory effects of lactic acid bacteria in turbot (Scophthalmus maximus). Clin Diagn Lab Immunol 9(6):1318–1323. https://doi.org/10.1128/CDLI.9.6.1318-1323.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I.Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canad J Microbiol 8(2):229–239

    Article  CAS  Google Scholar 

  15. Zarrouk C (1966) Contribution a l'etude d'une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima. Thesis. University of Paris, France.

  16. Fulbright SP, Chisholm S, Reardon KF (2016) Growth inhibition of Nannochloropsis species by Bacillus pumilus. Algal Res 20:70–76. https://doi.org/10.1016/j.algal.2016.09.016

    Article  Google Scholar 

  17. Heatley NG (1944) A method for the assay of penicillin. Biochem J 38(1):61. https://doi.org/10.1042/bj0380061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nithya C, Pandian SK (2010) The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch Microbiol 192(10):843–854. https://doi.org/10.1007/s00203-010-0612-613

    Article  CAS  PubMed  Google Scholar 

  19. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Stewart GS (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711. https://doi.org/10.1099/00221287-143-12-3703

    Article  CAS  PubMed  Google Scholar 

  20. Hemraj V, Diksha S, Avneet G (2013) A review on commonly used biochemical test for bacteria. Innov J Life Sci 1(1):1–7

    Google Scholar 

  21. Marques A, Thanh TH, Sorgeloos P, Bossier P (2006) Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 258(1–4):116–126. https://doi.org/10.1016/j.aquaculture.2006.04.021

    Article  Google Scholar 

  22. Reda RM, Selim KM, El-Sayed HM, El-Hady MA (2017) In vitro selection and identification of potential probiotics isolated from the gastrointestinal tract of nile Tilapia, Oreochromis niloticus. Probiot Antimicrob Proteins. https://doi.org/10.1007/s12602-017-9314-6

    Article  Google Scholar 

  23. Bhatia D, Mittal A, Malik DK (2016) Antimicrobial activity of PVP coated silver nanoparticles synthesized by Lysinibacillus varians. 3 Biotech 6(2):196. https://doi.org/10.1007/s13205-016-0514-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Janarthanam K, George MR, John KR, Jeyaseelan MJ (2012) In vitro and in vivo biocontrol of Vibrio harveyi using indigenous bacterium, Bacillus spp. Indian J Geo-Mar Sci 41(1):83–89. http://nopr.niscair.res.in/handle/123456789/13460

  25. Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29(5):803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  PubMed  Google Scholar 

  26. Nakayama T, Lu H, Nomura N (2009) Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp. Lett Appl Microbiol 49(6):679–684. https://doi.org/10.1111/j.1472-765x.2009.02725.x

    Article  CAS  PubMed  Google Scholar 

  27. Santhakumari S, Kannappan A, Pandian SK, Thajuddin N, Rajendran RB, Ravi AV (2016) Inhibitory effect of marine cyanobacterial extract on biofilm formation and virulence factor production of bacterial pathogens causing vibriosis in aquaculture. J Appl Phycol 28(1):313–324. https://doi.org/10.1007/s10811-015-0554-0

    Article  CAS  Google Scholar 

  28. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Agents that inhibit bacterial biofilm formation. Future Med Chem 7(5):647–671. https://doi.org/10.4155/fmc.15.7

    Article  CAS  PubMed  Google Scholar 

  29. Garge SS, Nerurkar AS (2016) Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHLlactonase produced by Lysinibacillus sp Gs50. PLoS ONE 11(12):10167344. https://doi.org/10.1371/journal.pone.0167344

    Article  CAS  Google Scholar 

  30. Abudoleh SM, Mahasneh AM (2016) Quorum Sensing Inhibitors: The novel bacterial infection disrupting agents. J Br Microbiol Res 15(6):1–18. https://doi.org/10.9734/BMRJ/2016/27009

    Article  Google Scholar 

  31. Pradhan AK, Pradhan N, Sukla LB, Panda PK, Mishra BK (2014) Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillusfusiformis S9. Bioprocess Biosyst Eng 37(2):139–149. https://doi.org/10.1007/s00449-013-0976-5

    Article  CAS  PubMed  Google Scholar 

  32. Prabha MS, Divakar K, Priya JDA, Selvam GP, Balasubramanian N, Gautam P (2015) Statistical analysis of production of protease and esterase by a newly isolated Lysinibacillus fusiformis AU01: purification and application of protease in sub-culturing cell lines. Ann Microbiol 65(1):33–46

    Article  Google Scholar 

  33. Chevanton M, Garnier M, Bougaran G, Schreiber N, Lukomska E, Bérard JB, Cadoret JP (2013) Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res 2(3):212–222. https://doi.org/10.1016/j.algal.2013.05.003

    Article  Google Scholar 

  34. Paul C, Pohnert G (2011) Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS ONE 6(6):e21032. https://doi.org/10.1371/journal.pone.0021032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joint I, Henriksen P, Fonnes GA, Bourne D, Thingstad TF, Riemann B (2002) Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquat Microb Ecol 29(2):145–159. https://doi.org/10.3354/ame029145

    Article  Google Scholar 

  36. Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria associated with benthic diatoms from Lake Constance:phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74(24):7740–7749. https://doi.org/10.1128/AEM.01399-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jung SW, Kim BH, Katano T, Kong DS, Han MS (2008) Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. J Appl Microbiol 105(1):186–195. https://doi.org/10.1111/j.1365-2672.2008.03733.x

    Article  CAS  PubMed  Google Scholar 

  38. Rier ST, Stevenson RJ (2002) Effects of light, dissolved organic carbon, and inorganic nutrients [2pt] on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia. 489(1–3):179–184. https://doi.org/10.1023/A:1023284821485

    Article  CAS  Google Scholar 

  39. Hatha AAM, Mujeeb Rahiman KM, Jasmine B, Suresh Kumar S (2014) Growth enhancement of micro algae, Chaetoceros calcitrans and Nannochloropsis oculata, using selected bacterial strains. Int J Curr Microbiol Appl Sci 3(4):352–359. http://www.ijcmas.com/

  40. Guo Z, Tong YW (2014) The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J Appl Phycol 26(3):1483–1492. https://doi.org/10.1007/s10811-013-0186-1

    Article  CAS  Google Scholar 

  41. Gomez-Gil B, Roque A, Velasco-Blanco G (2002) Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. Aquaculture 211(1–4):43–48. https://doi.org/10.1016/S0044-8486(02)00004-2

    Article  Google Scholar 

  42. Subasankari K, Thanappan V, Jeyapragash D, Anantharaman P, Sarangi RK (2020) Growth promoting studies on co-culturing Nannochloropsis oceanica with Halomonas aquamarina actively enhance the algal biomass and lipid production. Biocatal Agric Biotechnol 29:101790. https://doi.org/10.1016/j.bcab.2020.101790

    Article  Google Scholar 

  43. Berthold DE, Shetty KG, Jayachandran K, Laughinghouse HD, Gantar M (2019) Enhancing algal biomass and lipid production through bacterial co-culture. Biomass Bioenergy 122:280–289. https://doi.org/10.1016/j.biombioe.2019.01.033

    Article  CAS  Google Scholar 

  44. Liu B, Eltanahy EE, Liu H, Chua ET, Thomas-Hall SR, Wass TJ, Pan K, Schenk PM (2020) Growth-promoting bacteria double eicosapentaenoic acid yield in microalgae. Biores Technol 316:123916. https://doi.org/10.1016/j.biortech.2020.123916

    Article  CAS  Google Scholar 

  45. Loh JY, Ting ASY (2016) Effects of potential probiotic Lactococcus lactis subsp lactis on digestive enzymatic activities of live feed Artemia franciscana. Aquac Int 24(5):1341–1351. https://doi.org/10.1007/s12602-016-9235-9

    Article  CAS  Google Scholar 

  46. Gatesoupe F (1994) Lactic acid bacteria increase the resistance of turbot larvae (Scophthalmus maximus) against pathogenic Vibrio. Aquat Living Resour 7:277–282. https://doi.org/10.1051/alr:1994030

    Article  Google Scholar 

  47. Dixon B, Van Poucke S, Chair M, Demasque M, Nelis H, Sorgeloos P, De Leenheer A (1995) Bioencapsulation of the antibacterial drug sarafloxacin in nauplii of the brine shrimp Artemia fransiscana. J Aquat Anim Health 7:42–45. https://doi.org/10.1577/1548-8667(1995)007%3C0042:CBOTAD%3E2.3.CO;2

    Article  Google Scholar 

  48. Sorgeloos P, Dhert P, Candreva P (2001) Use of brine shrimp, Artemia sp., in marine fish larviculture. Aquaculture 200:147–159. https://doi.org/10.1016/S0044-8486(01)00698-6

    Article  Google Scholar 

  49. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671. https://doi.org/10.1128/MMBR.64.4.655-671.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hai N, Buller N, Fotedar R (2010) Encapsulation capacity of Artemia nauplii with customized probiotics for use in the cultivation of western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquac Res 41(6):893–903. https://doi.org/10.1111/j.1365-2109.2009.02370.x

    Article  Google Scholar 

  51. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2012) Performance of single and multi-strain probiotics during hatchery production of GreenshellTM mussel larvae, Perna canaliculus. Aquaculture 354:56–63. https://doi.org/10.1016/j.aquaculture.2012.04.026

    Article  CAS  Google Scholar 

  52. Avella MA, Gioacchini G, Decamp O, Makridis P, Bracciatelli C, Carnevali O (2010) Application of multi-species of Bacillus in sea bream larviculture. Aquaculture 305(1–4):12–19. https://doi.org/10.1016/j.aquaculture.2010.03.029

    Article  Google Scholar 

  53. Volkman JK, Brown MR (2006) Nutritional value of microalgae and applications. In: Subba Rao DV (ed) Algal cultures, analogues of blooms and applications, vol 1. Enfield (New Hampshire): Science Publishers., pp 407–457. https://www.cabdirect.org/cabdirect/abstract/20063096453

  54. Merchie G, Lavens P, Dhert PH, Dehasque M, Nelis H, De Leenheer A, Sorgeloos P (1995) Variation of ascorbic acid content in different live food organisms. Aquaculture 134:325–337. https://doi.org/10.1016/0044-8486(95)00049-8

    Article  CAS  Google Scholar 

  55. Brown MR (2002) Nutritional value and use of microalgae in aquaculture. CSIRO Marine Research, Hobart, pp 282-289. http://nutricionacuicola.uanl.mx/index.php/acu/article/view/242.

Download references

Acknowledgements

This research was funded by Universiti Putra Malaysia High Impact Grant (vote no: 9553100). The facilities was supported by Higher Institution Center of Excellence (HiCoE), Ministry of Science, Technology and Innovation (MOSTI) Malaysia, and Japan Science and Technology Agency (JST/Japan International Cooperation Agency (JICA)) through their Science and Technology Research Partnership for Sustainable Development (SATREPS-COSMOS) program with matching funds from Ministry of Education (MOE), Malaysia. Natasya Ain Rosland.

Funding

This research was supported by Ministry of Higher Education Malaysia through Fundamental Research Grant Scheme (FRGS/2/2013/STWN03/UPM/02/4). Special thanks to Ministry of Higher Education Malaysia (MOHE) through SATREPS JICA-JST COSMOS 2016–2021 and Higher Institution Center of Excellence (HiCoE) grant of Innovative Vaccine and Therapeutics against Fish Diseases, Vote No.: 6369100 for providing facilities at Institute of Bioscience and Faculty of Agriculture, UPM.

Author information

Authors and Affiliations

Authors

Contributions

N-AR and MK: This study was designed and conducted. MK, as the corresponding author, provided conceptual and technical guidance for all aspects in this research. NI, CCM, and FMY contributed their ideas, instruments, and reagents needed for this research. N-AR: This manuscript was drafted and MK: approved.

Corresponding author

Correspondence to Murni Karim.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

Not applicable since there was no animal usage in this research.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2123 kb)

Supplementary file2 (PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosland, NA., Ikhsan, N., Min, C.C. et al. Influence of Symbiotic Probiont Strains on the Growth of Amphora and Chlorella and Its Potential Protections Against Vibrio spp. in Artemia. Curr Microbiol 78, 3901–3912 (2021). https://doi.org/10.1007/s00284-021-02642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02642-2

Navigation