Skip to main content

Advertisement

Log in

Anti-Inflammatory Effects of an Extract from Pseudomonas aeruginosa and Its Purified Product 1-Hydroxyphenazine on RAW264.7 Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to discuss the effects of an extract from the culture medium of Pseudomonas aeruginosa (P. aeruginosa) 2016NX1 (chloroform extract of P. aeruginosa, CEPA) and its purified product 1-hydroxyphenazine on RAW264.7 cell inflammation. Cell viability was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method. TNF-α production was determined by an ELISA method. The effects of CEPA and its purified product 1-hydroxyphenazine on cell morphology were investigated using an inverted microscope. Quantitative real-time PCR was performed to determine mRNA expression levels. CEPA and 1-hydroxyphenazine had no obvious toxicity to cells when their concentrations were no more than 20 μg ml−1 and 5 μg ml−1, respectively. Both CEPA and 1-hydroxyphenazine suppressed the secretion of TNF-α and significantly reduced the mRNA expression levels of TNF-α, IL-1β, and IL-6. Both CEPA and 1-hydroxyphenazine inhibited M1 cell polarization after lipopolysaccharide (LPS) stimulation. The results in this article lay a good foundation for the biopharmaceutical applications of CEPA and 1-hydroxyphenazine in the future. CEPA and 1-hydroxyphenazine had certain anti-inflammatory activity, and inhibited LPS-induced RAW264.7 cell inflammation. Our findings suggest that CEPA and 1-hydroxyphenazine are potential chemicals with anti-inflammatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding Y, Dai L, Yu J (2020) Progress of research on treatment of Pseudomonas aeruginosa infection. Chin J Nosocomiol 30:955–960

    Google Scholar 

  2. Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa-mechanisms, epidemiology and evolution. Drug Resist Updat 44:100640

    Article  PubMed  Google Scholar 

  3. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192

    Article  CAS  PubMed  Google Scholar 

  4. Kariminik A, Baseri-Salehi M, Kheirkhah B (2017) Pseudomonas aeruginosa quorum sensing modulates immune responses: an updated review article. Immunol Lett 190:1–6

    Article  CAS  PubMed  Google Scholar 

  5. Khan R, Basha A, Goverdhanam R, Rao PC, Tanemura Y, Fujimoto Y, Begum AS (2015) Attenuation of TNF-alpha secretion by L-proline-based cyclic dipeptides produced by culture broth of Pseudomonas aeruginosa. Bioorg Med Chem Lett 25:5756–5761

    Article  CAS  PubMed  Google Scholar 

  6. Xiao M, Ruan C, Chen S, Liu Y, Lu Z (2018) Isolation and identification of a bacterium producing natural blue pigment. J Guangxi Norm Univ (Nat Sci Edit) 36:131–138

    Google Scholar 

  7. Xiao M, Sun M, Ruan C, Chen S, Liu Y, Lu Z (2019) Inhibitory effect of biocontrol bacterium 2016NX1 on plant pathogenic fungi and optimization of fermentation conditions. J Guangxi Norm Univ (Nat Sci Edit) 37:168–178

    Google Scholar 

  8. Liu TT, Ye FC, Pang CP, Yong TQ, Tang WD, Xiao J, Shang CH, Lu ZJ (2020) Isolation and identification of bioactive substance 1-hydroxyphenazine from Pseudomonas aeruginosa and its antimicrobial activity. Lett Appl Microbiol 71:303–310

    Article  PubMed  CAS  Google Scholar 

  9. McFarland AJ, Anoopkumar-Dukie S, Perkins AV, Davey AK, Grant GD (2012) Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazine-induced toxicity. Arch Toxicol 86:275–284

    Article  CAS  PubMed  Google Scholar 

  10. Kamal A, Shaik AB, Kumar CG, Mongolla P, Rani PU, Krishna KV, Mamidyala SK, Joseph J (2012) Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh. India J Microbiol Biotechnol 22:69–79

    Article  CAS  PubMed  Google Scholar 

  11. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  12. Messay B, Lim A, Marsland AL (2012) Current understanding of the bi-directional relationship of major depression with inflammation. Biol Mood Anxiety Disord 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H (2013) Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 18:13245–13259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Dyken SJ, Locksley RM (2013) Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 31:317–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lim KH, Staudt LM (2013) Toll-like receptor signaling. Cold Spring Harb Perspect Biol 5:a011247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Czock D, Keller F, Rasche FM, Häussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44:61–98

    Article  CAS  PubMed  Google Scholar 

  17. Fernandes ACF, Vieira NC, Santana ÁL, Gandra RLP, Rubia C, Castro-Gamboa I, Macedo JA, Macedo GA (2020) Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW264.7 macrophages. Food Chem Toxicol 145:111619

    Article  CAS  PubMed  Google Scholar 

  18. Zhu L, Zhao Q, Yang T, Ding W, Zhao Y (2015) Cellular metabolism and macrophage functional polarization. Int Rev Immunol 34:82–100

    Article  PubMed  CAS  Google Scholar 

  19. Linton MF, Fazio S (2003) Macrophages, inflammation, and atherosclerosis. Int J Obes Relat Metab Disord 27:S35–S40

    Article  CAS  PubMed  Google Scholar 

  20. Holden JA, Attard TJ, Laughton KM, Mansell A, O’Brien-Simpson NM, Reynolds EC (2014) Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun 82:4190–4203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. O’Brien-Simpson NM, Pathirana RD, Walker GD, Reynolds EC (2009) Porphyromonas gingivalis RgpA-Kgp proteinase-adhesin complexes penetrate gingival tissue and induce proinflammatory cytokines or apoptosis in a concentration-dependent manner. Infect Immun 77:1246–1261

    Article  CAS  PubMed  Google Scholar 

  22. Yan Y, He YY, Fang LH, Du GH (2014) Research progress of the roles of macrophages in atherosclerosis. Chin Pharm J 49:7–10

    CAS  Google Scholar 

  23. Coward WR, Okayama Y, Sagara H, Wilson SJ, Holgate ST, Church MK (2002) NF-kappa B and TNF-alpha: a positive autocrine loop in human lung mast cells? J Immunol 169:5287–5293

    Article  PubMed  Google Scholar 

  24. Russo C, Polosa R (2005) TNF-alpha as a promising therapeutic target in chronic asthma: a lesson from rheumatoid arthritis. Clin Sci (Lond) 109:135–142

    Article  CAS  Google Scholar 

  25. Tuttolomondo A, Di Raimondo D, Pecoraro R, Arnao V, Pinto A, Licata G (2012) Atherosclerosis as an inflammatory disease. Curr Pharm Des 18:4266–4288

    Article  CAS  PubMed  Google Scholar 

  26. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4:78–83

    Article  CAS  PubMed  Google Scholar 

  28. Song S, Xin P (2017) Effect of IL-1β, IL-6, TNF-α and IL-8 on the growth and metastasis of lung cancer in chronic obstructive pulmonary disease. J Clin Pathol Res 37:2323–2331

    Google Scholar 

  29. Li C, Guo Q (2018) Changes of serum IL-1β, IL-2, IL-6, IL-8 and TNF-α levels in patients with epilepsy and clinical significance. J Prev Med Chin People’s Lib Army 36:375–377

    Google Scholar 

  30. Hwang JH, Kim KJ, Ryu SJ, Lee BY (2016) Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem Biol Interact 248:1–7

    Article  CAS  PubMed  Google Scholar 

  31. Nemudzivhadi V, Masoko P (2014) In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid Based Complement Alternat Med 2014:625961

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hwang D, Kang MJ, Kang CW, Kim GD (2019) Kaempferol-3-O-β-rutinoside suppresses the inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells via the NF-κB and MAPK pathways. Int J Mol Med 44:2321–2328

    CAS  PubMed  Google Scholar 

  33. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  PubMed  Google Scholar 

  34. Jiang HX, Zhou L, He YW (2015) Research progress in biocontrol strain Pseudomonas aeruginosa: antifungal metabolites and their applications in biocontrol. Microbiol China 42:1338–1349

    CAS  Google Scholar 

  35. Fang YL, Sun S, Shen Y, He YW (2014) Progress on the development and application of biopesticide Shenqinmycin. Chin J Pestic Sci 16:387–393

    CAS  Google Scholar 

  36. Lin YW, Lee B, Liu PS, Wei LN (2016) Receptor-interacting protein 140 orchestrates the dynamics of macrophage M1/M2 polarization. J Innate Immun 8:97–107

    Article  CAS  PubMed  Google Scholar 

  37. Luo W, Ai L, Li X, Wang B, Zhou Y (2019) Chronic high glucose inhibits AKT phosphorylation and promotes M1 polarization of mouse RAW264.7 macrophages. Chin J Cell Mol Immunol 35:910–917

    Google Scholar 

  38. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440

    Article  CAS  PubMed  Google Scholar 

  39. Wang SX, Zhang JM, Yao XM, Wang ZG, Mao XD, Cao M (2017) Effects of luteolin on the secretion of inflammatory cytokines from activated RAW264.7 macrophages. J Med Postgrad 30:31–35

    Google Scholar 

  40. Hu JJ, Zhang DD, Chen JJ, Chen CS, Li YP (2012) Effect of pretreatment with puerarin on activation of LPS-induced RAW264.7 cells. China J Chin Mater Med 37:3112–3116

    CAS  Google Scholar 

  41. Jung HW, Seo UK, Kim JH, Leem KH, Park YK (2009) Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-kappaB signaling pathway in murine macrophages. J Ethnopharmacol 122:313–319

    Article  PubMed  Google Scholar 

  42. Cho W, Nam JW, Kang HJ, Windono T, Seo EK, Lee KT (2009) Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-kappaB pathway in LPS-stimulated murine macrophages. Int Immunopharmacol 9:1049–1057

    Article  CAS  PubMed  Google Scholar 

  43. Yun KJ, Shin JS, Choi JH, Back NI, Chung HG, Lee KT (2009) Quaternary alkaloid, pseudocoptisine isolated from tubers of Corydalis turtschaninovi inhibits LPS-induced nitric oxide, PGE(2), and pro-inflammatory cytokines production via the down-regulation of NF-kappaB in RAW 264.7 murine macrophage cells. Int Immunopharmacol 9:1323–1331

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Gong F, Li L, Zhao M, Song J (2014) Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response. Biomed Rep 2:233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou W, Feng X, Xiao C, Li S, Wang C (2013) Role of BPIFB1 in regulating inflammatory response of RAW264.7 cells infected by P. aeruginosa. Chin J Cell Mol Immunol 29:602–605

    CAS  Google Scholar 

  46. Dharni S, Alam M, Kalani K, Abdul-Khaliq SA, Srivastava SK, Patra DD (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechnol 22:674–683

    Article  CAS  PubMed  Google Scholar 

  47. Kerr JR, Taylor GW, Rutman A, Høiby N, Cole PJ, Wilson R (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52:385–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qi X, Xue M, Cui H, Yang K, Song K, Zha J, Wang G, Ling F (2020) Antimicrobial activity of Pseudomonas monteilii JK-1 isolated from fish gut and its major metabolite, 1-hydroxyphenazine, against Aeromonas hydrophila. Aquaculture 526:735366

    Article  CAS  Google Scholar 

  49. Prabhu MS, Walawalkar YD, Furtado I (2014) Purification and molecular and biological characterisation of the 1-hydroxyphenazine, produced by an environmental strain of Pseudomonas aeruginosa. World J Microbiol Biotechnol 30:3091–3099

    Article  CAS  PubMed  Google Scholar 

  50. Pierson LS 3rd, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78:1379–1392

    Article  CAS  PubMed  Google Scholar 

  52. Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 25:6149–6166

    Article  CAS  PubMed  Google Scholar 

  53. Jobson AG, Willmore E, Tilby MJ, Mistry P, Charlton P, Austin CA (2009) Effect of phenazine compounds XR11576 and XR5944 on DNA topoisomerases. Cancer Chemother Pharmacol 63:889–901

    Article  CAS  PubMed  Google Scholar 

  54. Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1686

    Article  CAS  PubMed  Google Scholar 

  55. Zhu X, Zeng Y, Zhao X, Zou S, He YW, Liang Y (2017) A genetic screen in combination with biochemical analysis in Saccharomyces cerevisiae indicates that phenazine-1-carboxylic acid is harmful to vesicular trafficking and autophagy. Sci Rep 7:1967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nakagawa H, Komori M, Nishimura K (2021) Carbon tetrachloride suppresses ER-Golgi transport by inhibiting COPII vesicle formation on the ER membrane in the RLC-16 hepatocyte cell line. Cell Biol Int 45:633–641

    Article  CAS  PubMed  Google Scholar 

  57. Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G (2019) Interleukin-6 secretion is limited by self-signaling in endosomes. J Mol Cell Biol 11:144–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 31860010), the Natural Science Foundation of Guangxi Zhuang autonomous region (No. 2017JJA130300y and 2018GXNSFAA138008), and Science and Technology Program of Guangzhou, China (No. 201804010155).

Author information

Authors and Affiliations

Authors

Contributions

JX wrote the main part of the paper and performed the experiments. AAT, TL, DG, and WL wrote the less part of the paper. CS and ZL conceived the experiments and proofread the paper. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Changhua Shang or ZuJun Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

The authors have obtained the appropriate permission from the responsible authority for performing cell assays.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Thwe, A.A., Liu, T. et al. Anti-Inflammatory Effects of an Extract from Pseudomonas aeruginosa and Its Purified Product 1-Hydroxyphenazine on RAW264.7 Cells. Curr Microbiol 78, 2762–2773 (2021). https://doi.org/10.1007/s00284-021-02544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02544-3

Navigation