Skip to main content
Log in

Effects of Amino Acids and Overexpression of dapA Gene on the Production of ε-Poly-L-lysine by Streptomyces diastatochromogenes Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, the strain Streptomyces diastatochromogenes 6#-7, which efficiently synthesizes ε-Poly-L-lysine, was studied and the effects of 18 amino acids and overexpression of dapA gene on the fermentation efficiency of ε-PL by S. diastatochromogenes were investigated. It was shown that L-proline, L-lysine, L-isoleucine, and L-threonine could promote the production of ε-PL. Moreover, the overexpression of the dihydrodipicolinate synthase gene (dapA) helped improve the fermentation performance of S. diastatochromogenes. The maximum ε-PL yield of the overexpressing strain (S. diastatochromogenes 12#-2) increased by 17.5% compared with the original strain in 500 mL shake flask. When the fermentation was conducted in a 5-L fermenter, the fermentation duration was extended by 48 h, and ε-PL yield reached 30.54 g/L, which was a 19.8% increase compared to the original strain. The results of this study offered a promising approach to augment the production of ε-PL from Streptomyces, thus paving the way to reduce the cost of product ε-PL and enhance the fermentation efficiency of ε-PL production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Munasinghe J, Silva DA, Weerasinghe G, Gunaratne A, Corke H (2015) Food safety in Sri Lanka: problems and solutions. Qual Aaaur Saf Crop 7:37–44. https://doi.org/10.3920/QAS2014.x007

    Article  Google Scholar 

  2. Marklinder I, Magnusson M, Nydahl M (2013) CHANCE: a healthy lifestyle in terms of food handling and hygiene. Brit Food J 115:223–234. https://doi.org/10.1108/00070701311302203

    Article  Google Scholar 

  3. Chibane LB, Degraeve P, Ferhout H, Bouajila J, Oulahal N (2019) Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agr 99:1457–1474. https://doi.org/10.1002/jsfa.9357

    Article  CAS  Google Scholar 

  4. Mostafa AA, Alaskar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM (2017) Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci 25:361–366. https://doi.org/10.1016/j.sjbs.2017.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anal AK, Perpetuini G, Petchkongkaew A, Tan R, Avallone S, Tofalo R, Nguyen HV, Chu-Ky S, Ho PH, Phan TT, Waché Y (2020) Food safety risks in traditional fermented food from South-East Asia. Food Control 109:106922. https://doi.org/10.1016/j.foodcont.2019.106922

    Article  CAS  Google Scholar 

  6. Devleesschauwer B, Haagsma JA, Angulo FJ, Bellinger DC, Cole D, Dopfer D, Fazil A, Fevre EM, Gibb HJ, Hald T, Kirk MD, Lake RJ, Noordhout CM, Mathers CD, Mcdonald SA, Pires SM, Speybroeck N, Thomas MK, Torgerson PR, Wu F, Havelaar AH, Praet N (2015) Methodological framework for world health organization estimates of the global burden of foodborne disease. PLoS One 10:e0142498. https://doi.org/10.1371/journal.pone.0142498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo L, Fang Y, Shao Z, Fang S, Li Y, Chen J, Meng Y (2020) pH-induced structural transition during complexation and precipitation of sodium caseinate and ε-poly-L-lysine. Int J Biol Macromol 154:644–653. https://doi.org/10.1016/j.ijbiomac.2020.03.062

    Article  CAS  PubMed  Google Scholar 

  8. Tuersuntuoheti T, Wang Z, Liang Z, Li X, Zhang M (2019) Review of the application of ε-poly-L-lysine in improving food quality and preservation. J Food Process Pres 43:e14153. https://doi.org/10.1111/jfpp.14153

    Article  CAS  Google Scholar 

  9. Lin L, Gu Y, Li C, Vittayapadung S, Cui H (2018) Antibacterial mechanism of ε-poly-L-lysine against Listeria monocytogenes and its application on cheese. Food Control 91:76–84. https://doi.org/10.1016/j.foodcont.2018.03.025

    Article  CAS  Google Scholar 

  10. Bo T, Han P, Su Q, Fu P, Guo G, Zheng Z, Tan Z, Zhong C, Jia S (2016) Antimicrobial ε-poly-L-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 61:123–134. https://doi.org/10.1016/j.foodcont.2015.09.018

    Article  CAS  Google Scholar 

  11. Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of ε-poly-L-lysine. J Antibiot 37:1449–1455. https://doi.org/10.7164/antibiotics.37.1449

    Article  CAS  Google Scholar 

  12. Carocho M, Barreiro MF, Morales P, Ferreira IC (2014) Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Compr Rev Food Sci F 13:377–399. https://doi.org/10.1111/1541-4337.12065

    Article  Google Scholar 

  13. Beezhold B, Johnston CS, Nochta KA (2014) Sodium benzoate-rich beverage consumption is associated with increased reporting of ADHD symptoms in college students: a pilot investigation. J Atten Disord 18:236–241. https://doi.org/10.1177/1087054712443156

    Article  PubMed  Google Scholar 

  14. Piper JD, Piper PW (2017) Benzoate and sorbate salts: a systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Compr Rev Food Sci F 16:868–880. https://doi.org/10.1111/1541-4337.12284

    Article  CAS  Google Scholar 

  15. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat Rev Microbiol 3:238–250. https://doi.org/10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez DI, Brun PL, Whitwell TC, Sani MA, Jamesbc M, Separovic F (2012) The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 14:15739–15751. https://doi.org/10.1039/C2CP43099A

    Article  CAS  PubMed  Google Scholar 

  17. Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto BJW (2003) Use of ADME studies to confirm the safety of ε-poly-L-lysine as a preservative in food. Regul Toxicol Pharm 37:328–340. https://doi.org/10.1016/S0273-2300(03)00029-1

    Article  CAS  Google Scholar 

  18. Zhang J, Zeng X, Chen X, Mao Z (2018) Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures. Bioproc Biosyst Eng 41:1143–1151. https://doi.org/10.1007/s00449-018-1943-y

    Article  CAS  Google Scholar 

  19. Chen X, Wang Z, Wang Y, Jiang F, Li D, Wang J (2011) Effects of yeast extract on poly-ε-lysine production in batch culture of Streptomyces albulus. Adv Mater Res 343–344:1023–1028

    Article  Google Scholar 

  20. Guo F, Zheng H, Zhang Z, Cheng Y, Tan Z, Jia S (2016) Effect of yeast extract on production of ε-poly-L-lysine by Streptomyces diastatochromogenes. Adv App Biotechnol ICAB. https://doi.org/10.1007/978-981-10-4801-2_24

    Article  Google Scholar 

  21. Shih IL, Shen MH (2006) Optimization of cell growth and poly (ɛ-lysine) production in batch and fed-batch cultures by Streptomyces albulus IFO 14147. Process Biochem 41:1644–1649. https://doi.org/10.1016/j.procbio.2006.03.013

    Article  CAS  Google Scholar 

  22. Guo F, Zheng H, Cheng Y, Song S, Zheng Z, Jia S (2018) Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology. Lett Appl Microbiol 66:124–131. https://doi.org/10.1111/lam.12812

    Article  CAS  PubMed  Google Scholar 

  23. Pan L, Chen X, Wang K, Mao Z (2019) Understanding high ε-poly-L-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. J Ind Microbiol Biotechnol 46:1781–1792. https://doi.org/10.1007/s10295-019-02240-z

    Article  CAS  PubMed  Google Scholar 

  24. Gharaie FS, Arumanayagam ACS, Tabatabai B, Chen H, Sitther V (2019) Augmenting Fremyella diplosiphon cellular lipid content and unsaturated fatty acid methyl esters via sterol desaturase gene overexpression. Appl Biochem Biotechnol 189:1127–1140. https://doi.org/10.1007/s12010-019-03055-5

    Article  CAS  Google Scholar 

  25. Dong X, Zhao Y, Hu J, Li Y, Wang X (2016) Attenuating l-lysine production by deletion of ddh and lysE and their effect on L-threonine and L-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Tech 93–94:70–78. https://doi.org/10.1016/j.enzmictec.2016.07.013

    Article  CAS  Google Scholar 

  26. Li M, Wang J, Geng Y, Li Y, Wang Q, Liang Q, Qi Q (2012) A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb Cell Fact 11:19. https://doi.org/10.1186/1475-2859-11-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itzhaki RF (1972) Colorimetric method for estimating polylysine and polyarginine. Anal Biochem 50:569–574. https://doi.org/10.1016/0003-2697(72)90067-X

    Article  CAS  PubMed  Google Scholar 

  28. Gorret N, Maubois JL, Engasser JM, Ghoul M (2001) Study of the effects of temperature, pH and yeast extract on growth and exopolysaccharides production by Propionibacterium acidi-propionici on milk microfiltrate using a response surface methodology. J Appl Microbiol 90:788–796. https://doi.org/10.1046/j.1365-2672.2001.01310.x

    Article  CAS  PubMed  Google Scholar 

  29. Baich A (1969) Proline synthesis in Escherichia coli a proline-inhibitable glutamic acid kinase. BBA-Gen Subjects 192:462–467. https://doi.org/10.1016/0304-4165(69)90395-X

    Article  CAS  Google Scholar 

  30. Baich A (1971) The biosynthesis of proline in Escherichia coli: phosphate-dependent glutamate-semialdehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochim Biophys Acta 244:129–134. https://doi.org/10.1016/0304-4165(71)90129-2

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Yang H, Long L, Zhao Y, Jiang Q, Wei F, Kang B, Liu S, Adebowale TO, Fu C, Yao K (2017) The effects of dietary supplementation with α-ketoglutarate on the intestinal microbiota, metabolic profiles, and ammonia levels in growing pigs. Anim Feed Sci Tech 234:321–328. https://doi.org/10.1016/j.anifeedsci.2017.03.017

    Article  CAS  Google Scholar 

  32. Sahm H, Eggeling L, Eikmanns B, Krämer R (1995) Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol Rev 16:243–252. https://doi.org/10.1111/j.1574-6976.1995.tb00171.x

    Article  CAS  Google Scholar 

  33. Zeng X, Zhao J, Chen X, Mao Z, Miao W (2017) Insights into the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18 for high ε-poly-L-lysine productivity. Bioproc Biosyst Eng 40:1775–1785. https://doi.org/10.1007/s00449-017-1832-9

    Article  CAS  Google Scholar 

  34. Hirohara H, Takehara M, Saimura M, Ikezaki A, Miyamoto M (2006) Erratum to: biosynthesis of poly (ε-L-lysine) s in two newly isolated strains of Streptomyces sp. Appl Microbiol Biot 73:967–967. https://doi.org/10.1007/s00253-006-0681-2

    Article  CAS  Google Scholar 

  35. Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H (2007) ɛ-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biot 76:873–882. https://doi.org/10.1007/s00253-007-1052-3

    Article  CAS  Google Scholar 

  36. Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agr Biol Chem 41:1807–1809. https://doi.org/10.1080/00021369.1977.10862764

    Article  CAS  Google Scholar 

  37. Wittmann C, Kim HM, Heinzle E (2004) Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87:1–6. https://doi.org/10.1002/bit.20103

    Article  CAS  PubMed  Google Scholar 

  38. Pfefferle W, Mockel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biot 79:59–112. https://doi.org/10.1007/3-540-45989-8_3

    Article  CAS  Google Scholar 

  39. Richaud F, Richaud C, Ratet P, Patte JC (1986) Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J Bacteriol 166:297–300. https://doi.org/10.1128/jb.166.1.297-300.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geng F, Chen Z, Zheng P, Sun J, Zeng A (2013) Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Appl Microbiol Biotechnol 97:1963–1971. https://doi.org/10.1007/s00253-012-4062-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (Project NO. 2018YFD0400205), and the National Natural Fund General Program of China (Project NO. 31771952) and the Open Project Program of State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology (No. SKLFNS-KF-201911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhilei Tan or Shiru Jia.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lv, J., Dong, T. et al. Effects of Amino Acids and Overexpression of dapA Gene on the Production of ε-Poly-L-lysine by Streptomyces diastatochromogenes Strains. Curr Microbiol 78, 2640–2647 (2021). https://doi.org/10.1007/s00284-021-02510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02510-z

Navigation