Skip to main content

Advertisement

Log in

Psychobiotics: The Next-Generation Probiotics for the Brain

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Psychobiotics are a special class of probiotics, which deliver mental health benefits to individuals. They differ from conventional probiotics in their ability to produce or stimulate the production of neurotransmitters, short-chain fatty acids, enteroendocrine hormones and anti-inflammatory cytokines. Owing to this potential, psychobiotics have a broad spectrum of applications ranging from mood and stress alleviation to being an adjuvant in therapeutic treatment for various neurodevelopment and neurodegenerative disorders. The common psychobiotic bacteria belong to the family Lactobacilli, Streptococci, Bifidobacteria, Escherichia and Enterococci. The two-way crosstalk between the brain and the gastrointestinal system is influenced by these bacteria. The neurons present in the enteric nervous system interact directly with the neurochemicals produced by microbiota of the gut, thereby influencing the signaling to central nervous system. The present review highlights the scope and advancements made in the field, enlisting numerous commercial psychobiotic products that have flooded the market. In the latter part we discuss the potential concerns with respect to psychobiotics, such as the effects due to withdrawal, compatibility with immunocompromised patients, and the relatively unregulated probiotic market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated during the current study.

References

  1. Crompton S (2019) Psychobiotics: your microbiome has the potential to improve your mental health, not just your gut health. Science focus. https://www.sciencefocus.com/the-human-body/psychobiotics-your-microbiome-has-the-potential-to-improve-your-mental-health-not-just-your-gut-heath/. Accessed 2 Jan 2020

  2. Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33

    PubMed  PubMed Central  Google Scholar 

  3. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mole Med 20(9):509–518

    Google Scholar 

  4. Lima-Ojeda JM, Rupprecht R, Baghai TC (2017) “I am I and my bacterial circumstances”: linking gut microbiome, neurodevelopment, and depression. Front Psychiatry 8:153

    PubMed  PubMed Central  Google Scholar 

  5. Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S (2017) Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract 7(4):987

    PubMed  PubMed Central  Google Scholar 

  6. Fournier CN, Houser M, Tansey MG, Glass JD, Hertzberg VS (2018) The gut microbiome and neuroinflammation in amyotrophic lateral sclerosis? Emerg Clin Evid Neurobiol Dis 104300:2020. https://doi.org/10.1016/j.nbd.2018.10.007.Accessed3Jan

    Article  Google Scholar 

  7. Pärtty A, Kalliomäki M, Wacklin P et al (2015) A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 77:823–828. https://doi.org/10.1038/pr.2015.51

    Article  PubMed  Google Scholar 

  8. Warner BB (2019) The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr Res 85(2):216–224

    PubMed  Google Scholar 

  9. Golofast B, Vales K (2020) The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 108:712–731. https://doi.org/10.1016/j.neubiorev.2019.12.011

    Article  PubMed  Google Scholar 

  10. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360

    CAS  PubMed  Google Scholar 

  11. Pietrucci D, Cerroni R, Unida V, Farcomeni A, Pierantozzi M, Mercuri NB, Biocca S, Stefani A, Desideri A (2019) Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat Disord 65:124–130

    PubMed  Google Scholar 

  12. Tim (2015) How gut bacteria affects the brain and body. Huffington Post. https://www.dailyinfographic.com/how-gut-bacteria-affects-the-brain-and-body. Accessed 3 Jan 2020

  13. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Rey FE (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537

    PubMed  PubMed Central  Google Scholar 

  14. Farzi A, Fröhlich EE, Holzer P (2018) Gut microbiota and the neuroendocrine system. Neurotherapeutics 15(1):5–22. https://doi.org/10.1007/s13311-017-0600-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726

    CAS  PubMed  Google Scholar 

  16. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet P (2016) Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 39(11):763–781

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bermúdez-Humarán LG, Salinas E, Ortiz GG, Ramirez-Jirano LJ, Morales JA, Bitzer-Quintero OK (2019) From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients 11(4):890

    PubMed Central  Google Scholar 

  18. Estrada A, Drew MD, Van Kessel A (2001) Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early-weaned pigs on performance and fecal bacterial populations. Can J Anim Sci 81(1):141–148. https://doi.org/10.4141/A00-037

    Article  CAS  Google Scholar 

  19. Beaumont W (1977) Experiments and observations on the gastric juice and the physiology of digestion. Nutr Rev 35(6):144–145

    CAS  PubMed  Google Scholar 

  20. Cannon WB (1909) The influence of emotional states on the functions of the alimentary canal. Am J Med Sci 137:480–487

    Google Scholar 

  21. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    CAS  PubMed  Google Scholar 

  22. Plotsky PM, Meaney MJ (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res 18(3):195–200

    CAS  PubMed  Google Scholar 

  23. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37:1885–1895

    CAS  PubMed  Google Scholar 

  24. Lutgendorff F, Akkermans LMA, Soderholm JD (2008) The role of microbiota and probiotics in stress-induced gastrointestinal damage. Curr Mol Med 8:282. https://doi.org/10.2174/156652408784533779

    Article  CAS  PubMed  Google Scholar 

  25. Söderholm JD, Perdue MH (2001) Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 280:G7–G13

    PubMed  Google Scholar 

  26. Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH, Sherman PM (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ (2016) Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. NeuroImage 125:988–995

    CAS  PubMed  Google Scholar 

  28. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217

    CAS  PubMed  Google Scholar 

  29. Kelly JR, Borre Y, O’Brien C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG (2016) Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118

    PubMed  Google Scholar 

  30. Sherwin E, Dinan T, Cryan J (2017) Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 1420(1):5–25

    PubMed  Google Scholar 

  31. Colica C, Avolio E, Bollero P, Costa de Miranda R, Ferraro S, Sinibaldi Salimei P, De Lorenzo A, Di Renzo L (2017) Evidences of a new psychobiotic formulation on body composition and anxiety. Mediators Inflamm 2017:10

    Google Scholar 

  32. El Ghoch M, Calugi S, Dalle Grave R (2016) The effects of low-carbohydrate diets on psychosocial outcomes in obesity/overweight: a systematic review of randomized. Controll Stud Nutr 8:402

    Google Scholar 

  33. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, Koga N, Hattori K, Kunugi H (2016) Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord 202:254–257

    PubMed  Google Scholar 

  34. Huang R, Wang K, Hu J (2016) Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients 8:483

    PubMed Central  Google Scholar 

  35. Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Murphy E, Cryan JF, Dinan TG, Clarke G (2016) Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 6(11):939

    Google Scholar 

  36. Kelly JR, Allen AP, Temko A, Hutch W, Kennedy PJ, Farid N, Murphy E, Boylan G, Bienenstock J, Cryan JF, Clarke G, Dinan TG (2017) Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav Immun 61:50–59

    CAS  PubMed  Google Scholar 

  37. Savignac HM, Kiely B, Dinan TG, Cryan JF (2014) Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 26:1615–1627. https://doi.org/10.1111/nmo.12427

    Article  CAS  PubMed  Google Scholar 

  38. Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, Shigyo T, Oishi K (2014) Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci 111:47–52

    CAS  PubMed  Google Scholar 

  39. Yamamura S, Morishima H, Kumano-go T, Suganuma N, Matsumoto H, Adachi H, Sigedo Y, Mikami A, Kai T, Masuyama A, Takano T, Sugita Y, Takeda M (2009) The effect of Lactobacillus helveticus fermented milk on sleep and health perception in elderly subjects. Eur J Clin Nutr 63:100–105

    CAS  PubMed  Google Scholar 

  40. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB et al (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8:e68322

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaaban SY, El Gendy YG, Mehanna NS, El-Senousy WM, El-Feki HSA, Saad K, El-Asheer OM (2018) The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci 21(9):676–681. https://doi.org/10.1080/1028415X.2017.1347746

    Article  CAS  PubMed  Google Scholar 

  42. Cenit MC, Sanz Y, Codoñer-Franch P (2017) Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 23(30):5486–5498

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dinan TG, Borre YE, Cryan JF (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19:1252–1257

    CAS  PubMed  Google Scholar 

  44. Cenit MC, Nuevo IC, Codoñer-Franch P, Dinan TG, Sanz Y (2017) Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. Eur Child Adolesc Psychiatry 26:1081–1092

    PubMed  Google Scholar 

  45. Kau A, Ahern P, Griffin N, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(1469–1480):e12

    Google Scholar 

  47. Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27(1):73–83

    CAS  PubMed  Google Scholar 

  48. Harach T, Jammes F, Muller C, Duthilleul N, Cheatham V, Zufferey V, Cheatham D, Lukasheva YA, Lasser T, Bolmont T (2017) Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer’s disease. Neurobiol Aging 51:83–96

    CAS  PubMed  Google Scholar 

  49. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938. https://doi.org/10.1172/JCI76304

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm Genome 25(1–2):49–74

    CAS  PubMed  Google Scholar 

  51. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  52. Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37:1369–1378

    CAS  PubMed  Google Scholar 

  53. Theberge A (2018) Psychobiotics, the future of mental health? Medium. https://medium.com/@atheberge/psychobiotics-the-future-of-mental-health-a86b7f35376e, Accessed 4 Jan 2020

  54. Daliri EBM, Deog H, Lee BH (2016) Psychobiotics; a promise for neurodevelopmental therapy. J Probiotics Health 4:146

    Google Scholar 

  55. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26(1):98–107

    CAS  PubMed  Google Scholar 

  56. McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25(2):183–188

    CAS  PubMed  Google Scholar 

  57. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558:263–275. https://doi.org/10.1113/jphysiol.2004.063388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen Y, Bai J, Wu D, Yu S, Qiang X, Bai H, Wang H, Peng Z (2019) Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response. J Affect Disord 259:56–66. https://doi.org/10.1016/j.jad.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  59. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62

    CAS  PubMed  Google Scholar 

  61. Zhou L, Foster JA (2015) Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 11:715–723

    PubMed  PubMed Central  Google Scholar 

  62. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108(38):16050–16055

    CAS  PubMed  Google Scholar 

  63. Perez-Burgos A, Wang B, Mao YK, Mistry B, McVey Neufeld KA, Bienenstock J, Kunze W (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 304(2):G211–G220

    CAS  PubMed  Google Scholar 

  64. Frank MG, Fonken LK, Dolzani SD, Annis JL, Siebler PH, Schmidt D, Watkins LR, Maier SF, Lowry CA (2018) Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: Attenuation of stress-induced microglial priming, alarmins and anxiety-like behaviour. Brain Behav Immun 73:352–363

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fonken LK, Frank MG, D’Angelo HM, Heinze JD, Watkins LR, Lowry CA, Maier SF (2018) Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiol Aging 71:105–114

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13:701–712

    CAS  PubMed  Google Scholar 

  67. Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y (2018) Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8:13

    PubMed  PubMed Central  Google Scholar 

  68. Goehler LE, Gaykema RP, Nguyen KT, Lee JE, Tilders FJ, Maier SF, Watkins LR (1999) Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci 19:2799–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hosoi J, Murphy GF, Egan CL, Lerner EA, Grabbe S, Asahina A, Granstein RD (1993) Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363:59–163

    Google Scholar 

  70. Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8:274–281

    CAS  PubMed  Google Scholar 

  71. Taché Y (2004) Corticotropin releasing factor receptor antagonists: potential future therapy in gastroenterology? Gut 53(7):919–921

    PubMed  PubMed Central  Google Scholar 

  72. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  73. Cheng L, Liu Y, Wu C, Wang S, Tsai Y (2019) Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J Food Drug Anal 27:632–648

    CAS  PubMed  Google Scholar 

  74. Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 14(7):668–675

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, Jiang M (2013) VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-kappaB pathway in rat model of DSS-induced colitis. Mol Cell Biochem 374:1–11

    CAS  PubMed  Google Scholar 

  76. Miyaoka T, Kanayama M, Wake R, Hashioka S, Hayashida M, Nagahama M et al (2018) Clostridium butyricum MIYAIRI 588 as adjunctive therapy for treatment-resistant major depressive disorder: a prospective open-label trial. Clin Neuropharmacol 41(5):151–155

    CAS  PubMed  Google Scholar 

  77. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, Memarzadeh MR, Asemi Z, Esmaillzadeh A (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32(3):315–320

    CAS  PubMed  Google Scholar 

  78. Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K (2019) Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr 38(2):522–528

    CAS  PubMed  Google Scholar 

  79. Ghorbani Z, Nazari S, Etesam F, Nourimajd S, Ahmadpanah M et al (2018) The effect of synbiotic as an adjuvant therapy to fluoxetine in moderate depression: a randomized multicenter trial. Arch Neurosci 25(2):e60507

    Google Scholar 

  80. Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K (2020) Effects of a psychobiotic supplement on serum brain-derived neurotrophic factor levels in depressive patients: a post hoc analysis of a randomized clinical trial. J Neurogastroenterol Motil 26(4):486–495. https://doi.org/10.5056/jnm20079

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mohammadi AA, Jazayeri S, Khosravi-Darani K et al (2016) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 19(9):387–395

    CAS  PubMed  Google Scholar 

  82. Kouchaki E, Tamtaji OR, Salami M, Bahmani F, Daneshvar Kakhaki R, Akbari E, Tajabadi-Ebrahimi M, Jafari P, Asemi Z (2017) Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin Nutr 36(5):1245–1249

    CAS  PubMed  Google Scholar 

  83. Liu YW, Liong MT, Chung YE, Huang HY, Peng WS, Cheng YF, Lin YS, Wu YY, Tsai YC (2019) Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial. Nutrients 11(4):820. https://doi.org/10.3390/nu11040820

    Article  CAS  PubMed Central  Google Scholar 

  84. Gualtieri P, Marchetti M, Cioccoloni G, De Lorenzo A, Romano L, Cammarano A, Colica C, Condò R, Di Renzo L (2020) Psychobiotics regulate the anxiety symptoms in carriers of allele A of IL-1β gene: a randomized, placebo-controlled clinical trial. Mediat Inflamm. https://doi.org/10.1155/2020/2346126

    Article  Google Scholar 

  85. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764

    CAS  PubMed  Google Scholar 

  86. Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61:355–361

    CAS  PubMed  Google Scholar 

  87. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2(4):256–261. https://doi.org/10.4161/gmic.2.4.16108

    Article  PubMed  Google Scholar 

  88. Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11(5):4745–4767

    PubMed  PubMed Central  Google Scholar 

  89. Grover S, Rashmi HM, Srivastava AK, Batish VK (2012) Probiotics for human health—new innovations and emerging trends. Gut Pathog 4(1):15

    PubMed  PubMed Central  Google Scholar 

  90. Boyle RJ, Robins-Browne RM, Tang ML (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83:1256–1264

    CAS  PubMed  Google Scholar 

  91. Bambury A, Sandhu K, Cryan JF, Dinan TG (2018) Finding the needle in the haystack: systematic identification of psychobiotics. Br J Pharmacol 175(24):4430–4438

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rezaei Nejad H, Oliveira BC, Sadeqi A, Dehkharghani A, Kondova I, Langermans JA, Guasto JS, Tzipori S, Widmer G, Sonkusale SR (2019) Ingestible osmotic pill for in vivo sampling of gut microbiomes. Adv Intell Syst 1:1900053. https://doi.org/10.1002/aisy.201900053

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management of Shaheed Rajguru College of Applied Science for Women, University of Delhi, for providing facilities for carrying out the present study.

Funding

No financial support.

Author information

Authors and Affiliations

Authors

Contributions

RS conceptualized the present study. DG and RS were involved in acquisition, analysis of the literature and drafting of the manuscript. RM and PM have contributed in drafting and critical revision of the manuscript. All authors have contributed substantially and approve the final version of the manuscript for publication.

Corresponding author

Correspondence to Richa Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Gupta, D., Mehrotra, R. et al. Psychobiotics: The Next-Generation Probiotics for the Brain. Curr Microbiol 78, 449–463 (2021). https://doi.org/10.1007/s00284-020-02289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02289-5

Navigation