Skip to main content

Advertisement

Log in

Variation in Gut Microbiota of Captive Bengal Slow Lorises

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Gastrointestinal microbiome plays an important role in animal metabolism, immune system and pathology associated with health and disease. Many wild slow lorises were confiscated from illegal trade into captivities and experienced a range of changes in living environment and diet. Microbiome analysis contributes to improving captive management by identifying the alteration in their gastrointestinal microbial communities and aiding in determining the factors affecting the health of captive slow lorises. The fecal samples of eighteen Bengal slow lorises (Nycticebus bengalensis) were used to compare gut microbiota from four rescue centers located in Dehong, Gejiu, Nanning and Puer cities of China. The results showed a significant site-dependent difference in microbial community diversity. Similar to other Lorisinae species, the Phyla including Bacteroidetes, Firmicutes and Proteobacteria dominated their gut microbiome composition. The Gejiu group exhibited a higher overall diversity and the unique OTUs, which is resulted from long-term isolated husbandry and heavy human disturbances. The scarcity of gums in the captive diet was likely to cause a lower abundance of Prevotella associated with soluble fiber degradation. The variation of intestinal microbiota in different environments highlights the necessity to improve feed preparation and husbandry management for the captive Bengal slow lorises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in National Center for Biotechnology Information (NCBI) at https://www.ncbi.nlm.nih.gov/sra/PRJNA579291, reference number PRJNA579291.

References

  1. Walsh PD, Abernethy KA, Bermejo M, Beyers R, De Wachter P, Akou ME, Huijbregts B, Mambounga DI, Toham AK, Kilbourn AM (2003) Catastrophic ape decline in western equatorial Africa. Nature 422:611–614

    Article  PubMed  CAS  Google Scholar 

  2. Estrada A, Garber PA, Rylands AB et al (2017) Impending extinction crisis of the world's primates: why primates matter. Sci Adv 3(1):e1600946

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stumpf RM, Gomez A, Amato KR, Yeoman CJ, Polk JD, Wilson BA, Nelson KE, White BA, Leigh SR (2016) Microbiomes, metagenomics, and primate conservation: new strategies, tools, and applications. Biol Conserv 199:56–66

    Article  Google Scholar 

  4. Barelli C, Albanese D, Donati C, Pindo M, Dallago C, Rovero F, Cavalieri D, Michael Tuohy K, Christine Hauffe H, De Filippo C (2015) Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci Rep 5:14862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K, Umaña JD, Carr M, Modry D, Todd A, Torralba M (2016) Temporal variation selects for diet-microbe co-metabolic traits in the gut of gorilla spp. ISME J 10(2):514–526

    Article  PubMed  CAS  Google Scholar 

  7. McCord AI, Chapman CA, Weny G, Tumukunde A, Hyeroba D, Klotz K, Koblings AS, Mbora DNM, Cregger M, White BA (2014) Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am J Primatol 76(4):347–354

    Article  PubMed  Google Scholar 

  8. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol 69(2):434–443

    Article  PubMed  CAS  Google Scholar 

  9. Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, Stumpf RM, Knight R, Leigh SR, Amato KR (2016) Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J Primatol 78(8):883–892

    Article  PubMed  CAS  Google Scholar 

  10. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Rex Gaskins H, Stumpf RM, Yildirim S, Torralba M (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Clayton JB, Vangay P, Huang H, Ward T, Knights D (2016) Captivity humanizes the primate microbiome. P Natl Acad Sci USA 113(37):10376–10381

    Article  CAS  Google Scholar 

  12. Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD (2014) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol 90(3):883–894

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura N, Amato KR, Garber P, Estrada A, Mackie RI, Gaskins HR (2011) Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in palenque national park. Mexico Am J Primatol 73(9):909–919

    Article  PubMed  Google Scholar 

  14. Cornick NA, Jensen NS, Stahl DA, Hartman PA, Allison MJ (1994) Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int J Syst Bacteriol 44(1):87–93

    Article  PubMed  CAS  Google Scholar 

  15. Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16(7):1024–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kishimoto A, Ushida K, Phillips GO, Ogasawara T, Sasaki Y (2006) Identification of intestinal bacteria responsible for fermentation of gum arabic in pig model. Curr Microbiol 53(3):173–177

    Article  PubMed  CAS  Google Scholar 

  17. Ushida K (2011) Intestinal bacteria in chimpanzees in bossou: a preliminary study of their nutritional implication. In: Matsuzawa T, Humle T, Sugiyama Y (eds) The chimpanzees of Bossou and Nimba. Springer, Tokyo, pp 347–352

    Chapter  Google Scholar 

  18. Garber PA, Mallott EK, Porter LM, Gomez A (2019) The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small-bodied primate. Am J Primatol 81:e23003

    PubMed  CAS  Google Scholar 

  19. Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nekaris KAI (2014) Extreme primates: ecology and evolution of Asian lorises. Evol Anthropol 23(5):177–187

    Article  PubMed  CAS  Google Scholar 

  21. Ni Q, Wang Y, Weldon A, Xie M, Xu H, Yao Y, Zhang M, Li Y, Li Y, Zeng B, Nekaris KAI (2018) Conservation implications of primate trade in china over 18 years based on web news reports of confiscations. PeerJ 6:e6069

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nekaris KAI, Starr CR (2015) Conservation and ecology of the neglected slow loris: priorities and prospects. Endanger Species Res 28(1):87–95

    Article  Google Scholar 

  23. Cabana F, Dierenfeld E, Wirdateti W, Donati G, Nekaris KAI (2017) The seasonal feeding ecology of the javan slow loris (Nycticebus javanicus). Am J Phys Anthropol 162(4):768–781

    Article  PubMed  Google Scholar 

  24. Cabana F, Dierenfeld E, Wirdateti W, Donati G, Nekaris KAI (2018) Trialling nutrient recommendations for slow lorises (Nycticebus spp.) based on wild feeding ecology. J Anim Physiol An N 102(1):e1–e10

    Article  CAS  Google Scholar 

  25. Fitch-Snyder H, Schulze H (eds) (2001) Management of lorises in captivity: a husbandry manual for Asian lorisines (Nycticebus and Loris spp.). Center for Reproduction of Endangered Species, Zoological Society of San Diego, San Diego

    Google Scholar 

  26. McKenzie VJ, Song SJ, Delsuc F, Prest TL, Knight R (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57(4):690–704

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hale VL, Tan CL, Niu K, Yang Y, Knight R, Zhang Q, Cui D, Amato KR (2018) Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb Ecol 75(2):515–527

    Article  PubMed  Google Scholar 

  28. Less EH, Lukas KE, Bergl R, Ball R, Kuhar CW, Lavin SR, Raghanti MA, Wensvoort J, Willis MA, Dennis PM (2014) Implementing a low-starch biscuit-free diet in zoo gorillas: the impact on health. Zoo Biol 33(1):63–73

    Article  PubMed  CAS  Google Scholar 

  29. Borbón-García A, Reyes A, Vives-Flórez M, Caballero S (2017) Captivity shapes the gut microbiota of Andean bears: insights into health surveillance. Front Microbiol 8:1316

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A, Acosta JC, Caviedes-Vidal E, Bordenstein SR (2017) Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions, and transmission. Mol ecol 26(4):1175–1189

    Article  PubMed  Google Scholar 

  31. Xu B, Huang ZX, Wang XY, Gao RC, Tang XH, Mu YL, Yang YJ, Hui S, Zhu LD (2010) Phylogenetic analysis of the fecal flora of the wild pygmy loris. Am J Primatol 72(8):699–706

    Article  CAS  Google Scholar 

  32. Xu B, Xu W, Yang F, Li J, Yang Y, Tang X, Mu Y, Zhou J, Huang Z (2013) Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS ONE 8(2):e56565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cabana F, Clayton JB, Nekaris KAI, Wirdateti W, Knights D, Seedorf H (2019) Nutrient-based diet modifications impact on the gut microbiome of the javan slow loris (Nycticebus javanicus). Sci Rep 9(1):4078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, White BA, Nelson KE (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE 5(11):e13963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fogel AT (2015) The gut microbiome of wild lemurs: a comparison of sympatric Lemur catta and Propithecus verreauxi. Folia Primatol 86(1–2):85–95

    Article  Google Scholar 

  36. Das N, Nekaris KAI, Bhattacharjee PC (2014) Medicinal plant exudativory by the Bengal slow loris Nycticebus bengalensis. EndangerSpecies Res 23(2):149–157

    Google Scholar 

  37. Mccafferty J, Mühlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, Sha W, Jobin C, Fodor AA (2013) Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J 7(11):2116–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Amato KR, Metcalf JL, Song SJ, Hale VL, Clayton J, Ackermann G, Humphrey G, Niu K, Cui D, Zhao H (2016) Using the gut microbiota as a novel tool for examining colobine primate gi health. Glob Ecol Conserv 7:225–237

    Article  Google Scholar 

  39. Nekaris KAI, Shepherd CR, Starr CR, Nijman V (2010) Exploring cultural drivers for wildlife trade via an ethnoprimatological approach: a case study of slender and slow lorises (Loris and Nycticebus) in South and Southeast Asia. Am J Primatol 72(10):877–886

    Article  PubMed  CAS  Google Scholar 

  40. Nekaris KAI, Jaffe S (2007) Unexpected diversity of slow lorises (Nycticebus spp.) within the Javan pet trade: implications for slow loris taxonomy. Contrib Zool 76(3):187–196

    Article  Google Scholar 

  41. Clayton JB, Andres G, Katherine A, Dan KA, Travis D, Ran B, Rob K, Steven L, Rebecca S, Tiffany W (2018) The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol 80(6):e22867

    Article  PubMed  Google Scholar 

  42. Goldberg TL, Gillespie TR, Rwego IB, Wheeler E, Estoff EL, Chapman CA (2007) Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western uganda. Biol Conserv 135(4):511–517

    Article  Google Scholar 

  43. Moeller AH, Degnan PH, Pusey AE, Wilson ML, Hahn BH, Ochman H (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat Comm 3:1179

    Article  CAS  Google Scholar 

  44. Redford KH, Segre JA, Salafsky N, Rio CM, McAloose D (2012) Conservation and the microbiome. Conserv Biol 26(2):195–197

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to husbandry managers of rescue centers in Dehong, Nanning, Gejiu, and Puer. This study is supported by the National Natural Science Foundation of China (No.31501873).

Author information

Authors and Affiliations

Authors

Contributions

QN and MX conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft. XH and XM performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or tables, and approved the final draft. BZ, YL analyzed the data, authored or reviewed drafts of the paper, and approved the final draft. HX, MY, DL, YY, MZ, YL, XF, DY contributed reagents/materials/analysis tools, approved the final draft.

Corresponding authors

Correspondence to Qingyong Ni or Meng Xie.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Research Involving Human and Animal Rights

Sample collecting and experimental protocols were performed in accordance with the Institutional Review Board (IRB13627) and the Institutional Animal Care and Use Committee of the Sichuan Agricultural University under permit number DKY-S20160702, as well as Administration for Wild Animal Protection in Yunnan and Guangxi Province, China, and adhered to the American Society of Primatologists principles for the ethical treatment of non-human primates.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Q., He, X., Zeng, B. et al. Variation in Gut Microbiota of Captive Bengal Slow Lorises. Curr Microbiol 77, 2623–2632 (2020). https://doi.org/10.1007/s00284-020-02035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02035-x

Navigation