Skip to main content
Log in

A Wake-Up Call for the Efficient Use of the Bacterial Resting Cell Process, with Focus on Low Solubility Products

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Micro-organisms are often subjected to stressful conditions. Owing to their capacity to adapt, they try to rapidly cope with the unfavorable conditions by lowering their growth rate, changing their morphology, and developing altered metabolite production and other stress-related metabolism. The stress-related metabolism of the cells which interrupted their growth is often referred to as resting metabolism and can be exploit for specific and high rate production of secondary metabolites. Although the bacterial resting cell process has been described decades ago, we find it worthwhile to bring the process under renewed attention and refer to this type of processes as non-growing metabolically active (NGMA) cell processes. Despite their use may sound counterproductive, NGMA cells can be of interest to increase substrate conversion rates or enable conversion of certain substrates, not accessible to growing cells due to their bacteriostatic nature or requirement of resistance to a multitude of different stress mechanisms. Biomass reuse is an interesting feature to improve the economics of NGMA cell processes. Yet, for lipophilic compounds or compounds with low solubility, biomass separation can be delicate. This review draws the attention on existing examples of NGMA cell processes, summarizing some developmental tools and highlighting drawbacks and opportunities, to answer the research question if NGMA cells can have a distinct added value in industry. Particular elaboration is made on a novel and more broadly applicable strategy to enable biomass reuse for conversions of compounds with low solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from Separel [91])

Fig. 3

Similar content being viewed by others

References

  1. Kieslich K (1984) Biotechnology. Verlag Chemie, Weinheim

    Google Scholar 

  2. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596. https://doi.org/10.1007/s002530051340

    Article  CAS  Google Scholar 

  3. Klatte S, Lorenz E, Wendisch VF (2014) Whole cell biotransformation for reductive amination reactions. Bioengineered 5:56–62. https://doi.org/10.4161/bioe.27151

    Article  PubMed  Google Scholar 

  4. Ladkau N, Schmid A, Bühler B (2014) The microbial cell-functional unit for energy dependent multistep biocatalysis. Curr Opin Biotechnol 30:178–189

    Article  CAS  Google Scholar 

  5. Kratzer R, Woodley JM, Nidetzky B (2015) Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnol Adv 33:1641–1652

    Article  CAS  Google Scholar 

  6. De Carvalho CCCR (2017) Whole cell biocatalysts: essential workers from Nature to the industry. Microb Biotechnol 10:250–263. https://doi.org/10.1111/1751-7915.12363

    Article  PubMed  Google Scholar 

  7. Houwman JA, Knaus T, Costa M, Mutti FG (2019) Efficient synthesis of enantiopure amines from alcohols using resting E. coli cells and ammonia. Green Chem 21:3846–3857. https://doi.org/10.1039/C9GC01059A

    Article  CAS  Google Scholar 

  8. Quastel JH, Whetham MD (1924) The equilibria existing between succinic, fumaric, and malic acids in the presence of resting bacteria. Biochem J 18:519–534. https://doi.org/10.1042/bj0180519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Achkar J, Ferrandez A (2008) Fermentative production of hydroxytyrosol. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2008064835&_cid=P11-K3WJDD-75503-1. Accessed 8 July 2019

  10. Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874. https://doi.org/10.1146/annurev.mi.47.100193.004231

    Article  CAS  PubMed  Google Scholar 

  11. Gray JV, Petsko GA, Johnston GC et al (2004) “Sleeping Beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206. https://doi.org/10.1128/mmbr.68.2.187-206.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B 163:224–231. https://doi.org/10.1098/rspb.1965.0069

    Article  CAS  PubMed  Google Scholar 

  13. Van Bodegom P (2007) Microbial maintenance: a critical review on its quantification. Microb Ecol 53:513–523. https://doi.org/10.1007/s00248-006-9049-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zambrano MM, Kolter R (1996) GASPing for life in stationary phase. Cell 86:181–184

    Article  CAS  Google Scholar 

  15. Pletnev P, Osterman I, Sergiev P et al (2015) Survival guide: Escherichia coli in the stationary phase. Acta Nat 7:22–33

    Article  CAS  Google Scholar 

  16. Jenkins DE, Auger EA, Matin A (1991) Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 173:1992–1996. https://doi.org/10.1128/jb.173.6.1992-1996.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jenkins DE, Chaisson SA, Matin A (1990) Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol 172:2779–2781. https://doi.org/10.1128/jb.172.5.2779-2781.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59. https://doi.org/10.1111/j.1365-2958.1991.tb01825.x

    Article  CAS  PubMed  Google Scholar 

  19. Nair S, Finkel SE (2004) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186:4192–4198. https://doi.org/10.1128/JB.186.13.4192-4198.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tani TH, Khodursky A, Blumenthal RM et al (2002) Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci USA 99:13471–13476. https://doi.org/10.1073/pnas.212510999

    Article  CAS  PubMed  Google Scholar 

  21. Prossliner T, Skovbo Winther K, Sørensen MA, Gerdes K (2018) Ribosome hibernation. Annu Rev Genet 52:321–348. https://doi.org/10.1146/annurev-genet-120215-035130

    Article  CAS  PubMed  Google Scholar 

  22. Nyström T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54:855–862. https://doi.org/10.1111/j.1365-2958.2004.04342.x

    Article  CAS  PubMed  Google Scholar 

  23. Vinothkumar KR, Raunser S, Jung H, Kühlbrandt W (2006) Oligomeric structure of the carnitine transporter CaiT from Escherichia coli. J Biol Chem 281:4795–4801. https://doi.org/10.1074/jbc.M508993200

    Article  CAS  PubMed  Google Scholar 

  24. Thorne SH, Williams HD (1997) Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J Bacteriol 179:6894–6901. https://doi.org/10.1128/jb.179.22.6894-6901.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thompson JK, McConville KJ, McReynolds C et al (1997) Mutations to antibiotic resistance occur during the stationary phase in Lactobacillus plantarum ATCC 8014. Microbiology 143:1941–1949. https://doi.org/10.1099/00221287-143-6-1941

    Article  CAS  Google Scholar 

  26. Nguyen D, Joshi-Datar A, Lepine F et al (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science (80-) 334:982–986. https://doi.org/10.1126/science.1211037

    Article  CAS  Google Scholar 

  27. Dougherty TJ, Pucci MJ (1994) Penicillin-binding proteins are regulated by rpoS during transitions in growth states of Escherichia coli. Antimicrob Agents Chemother 38:205–210. https://doi.org/10.1128/AAC.38.2.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baquero MR, Bouzon M, Varea J, Moreno F (1995) sbmC, a stationary-phase induced SOS Escherichia coli gene, whose product protects cells from the DNA replication inhibitor microcin B17. Mol Microbiol 18:301–311. https://doi.org/10.1111/j.1365-2958.1995.mmi_18020301.x

    Article  CAS  PubMed  Google Scholar 

  29. Tamer YT, Toprak E (2017) On the race to starvation: how do bacteria survive high doses of antibiotics? Mol Cell 68:1019–1021. https://doi.org/10.1016/j.molcel.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  30. Palmfeldt J, Paese M, Hahn-Hagerdal B, van Niel EWJ (2004) The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis. Appl Environ Microbiol 70:5477–5484. https://doi.org/10.1128/AEM.70.9.5477-5484.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferenci T (2001) Hungry bacteria—definition and properties of a nutritional state. Environ Microbiol 3:605–611

    Article  CAS  Google Scholar 

  32. Teixeira AP, Alves C, Alves PM et al (2007) Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinform. https://doi.org/10.1186/1471-2105-8-30

    Article  Google Scholar 

  33. Chen G, Chen J (2013) A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Appl Microbiol Biotechnol 97:4325–4332. https://doi.org/10.1007/s00253-013-4723-2

    Article  CAS  PubMed  Google Scholar 

  34. Lüthi-Peng Q, Dileme F, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296. https://doi.org/10.1007/s00253-002-1002-z

    Article  CAS  PubMed  Google Scholar 

  35. El-Ziney MG, Arneborg N, Uyttendaele M et al (1998) Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol Lett 20:913–916. https://doi.org/10.1023/a:1005483215378

    Article  CAS  Google Scholar 

  36. Li K, Mao X, Liu L et al (2016) Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-d-gluconic acid by Gluconobacter oxydans. Microb Cell Factories 15:121. https://doi.org/10.1186/s12934-016-0521-8

    Article  CAS  Google Scholar 

  37. Kleber HP, Canovas-Diaz M, Obon JM, Iborra JM (2003) Method for producing l-carnitine from crotonobetaine using a two stage continuous cell-recycle reactor. https://patentscope.wipo.int/search/en/detail.jsf?docId=US40052745&_cid=P11-K3WKIT-77489-1. Accessed 8 Nov 2019

  38. Stanley NC, Douglas SI, Abdul M et al (1986) Production of biological products using resting cells. https://worldwide.espacenet.com/publicationDetails/description?CC=EP&NR=0101273A3&KC=A3&FT=D&ND=&date=19860122&DB=&locale=. Accessed 2 Dec 2019

  39. Abad S, Nahalka J, Bergler G et al (2010) Stepwise engineering of a Pichia pastorisd-amino acid oxidase whole cell catalyst. Microb Cell Factories 9:24. https://doi.org/10.1186/1475-2859-9-24

    Article  CAS  Google Scholar 

  40. Ernst M, Kaup B, Müller M et al (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634. https://doi.org/10.1007/s00253-004-1765-5

    Article  CAS  PubMed  Google Scholar 

  41. Hall M, Hauer B, Stuermer R et al (2006) Asymmetric whole-cell bioreduction of an α, β-unsaturated aldehyde (citral): competing prim-alcohol dehydrogenase and C-C lyase activities. Tetrahedron Asymmetry 17:3058–3062. https://doi.org/10.1016/j.tetasy.2006.11.018

    Article  CAS  Google Scholar 

  42. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339. https://doi.org/10.1007/s00253-003-1470-9

    Article  CAS  PubMed  Google Scholar 

  43. Arense P, Bernal V, Charlier D et al (2013) Metabolic engineering for high yielding l(−)-carnitine production in Escherichia coli. Microb Cell Factories 12:56–67. https://doi.org/10.1186/1475-2859-12-56

    Article  CAS  Google Scholar 

  44. Abdelkafi S, Labat M, Gam ZBA et al (2581T) Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells. World J Microbiol Biotechnol 24:675–680. https://doi.org/10.1007/s11274-007-9523-3

    Article  CAS  Google Scholar 

  45. Zhang Y-W, Jeya M, Lee J-K (2010) l-ribulose production by an Escherichia coli harboring l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 87:1993–1999. https://doi.org/10.1007/s00253-010-2600-9

    Article  CAS  PubMed  Google Scholar 

  46. Gopal Ramakrishnan G, Nehru G, Suppuram P et al (2015) Bio-transformation of glycerol to 3-hydroxypropionic acid using resting cells of Lactobacillus reuteri. Curr Microbiol 71:517–523. https://doi.org/10.1007/s00284-015-0878-7

    Article  CAS  Google Scholar 

  47. Sehgal SN, Bagli JF (1984) A stereospecific microbial reduction. https://www.google.mk/patents/EP0148612A2?cl=en. Accessed 16 Nov 2017

  48. Shen Y, Wang F, Wang Y et al (2016) Cyclic utilization of HP-β-CD in the bioconversion of cortisone acetate by Arthrobacter simplex. Biotechnol Lett 38:597–602. https://doi.org/10.1007/s10529-015-2022-y

    Article  CAS  PubMed  Google Scholar 

  49. Gong J-S, Shi J-S, Lu Z-M et al (2017) Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol 37:69–81. https://doi.org/10.3109/07388551.2015.1120704

    Article  CAS  PubMed  Google Scholar 

  50. Chae HJ, Yoo YJ (1997) Optimization of catechol production using immobilized resting cells of Pseudomonas putida in aqueous/organic two-phase system. J Microbiol Biotechnol 7:345–351

    CAS  Google Scholar 

  51. Magni C, de Mendoza D, Konings WN, Lolkema JS (1999) Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. J Bacteriol 181:1451–1457

    Article  CAS  Google Scholar 

  52. Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786. https://doi.org/10.1128/AEM.69.2.779-786.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karnholz A, Küsel K, Gössner A et al (2002) Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68:1005–1009. https://doi.org/10.1128/AEM.68.2.1005-1009.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. BBA Proteins Proteomics 1784:1873–1898. https://doi.org/10.1016/j.bbapap.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez S, Demain A (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906. https://doi.org/10.1016/S0141-0229(02)00172-2

    Article  CAS  Google Scholar 

  56. AlW B, Harris RE (1986) The manipulation of micro-organisms for the production of secondary metabolites. Biotechnol Genet Eng Rev 4:117–144. https://doi.org/10.1080/02648725.1986.10647825

    Article  Google Scholar 

  57. Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fiechter A (ed) History of modern biotechnology I. Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–39

    Google Scholar 

  58. Bernal V, Sevilla Á, Cánovas M, Iborra JL (2007) Production of l-carnitine by secondary metabolism of bacteria. Microb Cell Factories 6:1–17. https://doi.org/10.1186/1475-2859-6-31

    Article  CAS  Google Scholar 

  59. Kremling A, Geiselmann J, Ropers D, de Jong H (2015) Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol 23:99–109. https://doi.org/10.1016/j.tim.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  60. Stülke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201. https://doi.org/10.1016/S1369-5274(99)80034-4

    Article  PubMed  Google Scholar 

  61. Alvarez-Cohen L, McCarty PL (1991) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    Article  CAS  Google Scholar 

  62. Checinska A, Paszczynski A, Burbank M (2015) Bacillus and other spore-forming genera: variations in responses and mechanisms for survival. Annu Rev Food Sci Technol 6:351–369. https://doi.org/10.1146/annurev-food-030713-092332

    Article  CAS  PubMed  Google Scholar 

  63. Paul C, Filippidou S, Jamil I et al (2019) Bacterial spores, from ecology to biotechnology. In: Advances in applied microbiology. Academic, San Diego, pp 79–111

  64. Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711. https://doi.org/10.1073/pnas.54.3.704

    Article  CAS  PubMed  Google Scholar 

  65. Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  66. Rebnegger C, Vos T, Graf AB et al (2016) Pichia pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl Environ Microbiol 82:4570–4583. https://doi.org/10.1128/AEM.00638-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vos T, Hakkaart XDV, De Hulster EA et al (2016) Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microb Cell Factories 15:111. https://doi.org/10.1186/s12934-016-0501-z

    Article  CAS  Google Scholar 

  68. Lange J, Takors R, Blombach B (2017) Zero-growth bioprocesses: a challenge for microbial production strains and bioprocess engineering. Eng Life Sci 17:27–35. https://doi.org/10.1002/elsc.201600108

    Article  CAS  Google Scholar 

  69. Shi X, Chang C, Ma S et al (2017) Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells. J Ind Microbiol Biotechnol 44:697–704. https://doi.org/10.1007/s10295-016-1777-z

    Article  CAS  PubMed  Google Scholar 

  70. León R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500. https://doi.org/10.1016/S0141-0229(98)00078-7

    Article  Google Scholar 

  71. Kivistö KT, Kroemer HK (1997) Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 37:40–48

    Article  Google Scholar 

  72. Fuhr U, Hsin C, Li X et al (2019) Assessment of pharmacokinetic drug–drug interactions in humans: in vivo probe substrates for drug metabolism and drug transport revisited. Annu Rev Pharmacol Toxicol 59:507–536. https://doi.org/10.1146/annurev-pharmtox-010818-021909

    Article  CAS  PubMed  Google Scholar 

  73. Yu CL, Louie TM, Summers R et al (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J Bacteriol 191:4624–4632. https://doi.org/10.1128/JB.00409-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramesh H, Zajkoska P, Rebroš M, Woodley JM (2016) The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. Enzyme Microb Technol 83:7–13. https://doi.org/10.1016/j.enzmictec.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  75. Cantarella M, Cantarella L, Gallifuoco A et al (2008) Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors. Enzyme Microb Technol 42:222–229. https://doi.org/10.1016/j.enzmictec.2007.09.012

    Article  CAS  Google Scholar 

  76. Cantarella L, Gallifuoco A, Malandra A et al (2010) Application of continuous stirred membrane reactor to 3-cyanopyridine bioconversion using the nitrile hydratase–amidase cascade system of Microbacterium imperiale CBS 498–74. Enzyme Microb Technol 47:64–70. https://doi.org/10.1016/j.enzmictec.2010.05.009

    Article  CAS  Google Scholar 

  77. Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J (1996) Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention. FEMS Microbiol Ecol 19:47–52. https://doi.org/10.1111/j.1574-6941.1996.tb00197.x

    Article  CAS  Google Scholar 

  78. Pinton H, Rabaud J, Engasser J, Marc A (1991) Cytoflow—a new perfusion bioreactor for research and production. Biotech Forum Eur 8:344–347

    Google Scholar 

  79. Bonham-Carter J, Shevitz J (2011) A brief history of perfusion biomanufacturing. Bioprocess Int. https://bioprocessintl.com/upstream-processing/bioreactors/a-brief-history-of-perfusion-biomanufacturing-322322/. Accessed 24 Feb 2018

  80. Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110:206–219. https://doi.org/10.1002/bit.24608

    Article  CAS  PubMed  Google Scholar 

  81. Goffin P, van de Bunt B, Giovane M et al (2010) Understanding the physiology of Lactobacillus plantarum at zero growth. Mol Syst Biol 6:413. https://doi.org/10.1038/msb.2010.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yenkie KM, Wu WZ, Clark RL et al (2016) A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: matching biological and process feasibility. Biotechnol Adv 34:1362–1383

    Article  CAS  Google Scholar 

  83. Hülsewede D, Meyer LE, von Langermann J (2019) Application of in situ product crystallization and related techniques in biocatalytic processes. Chem Eur J 25:4871–4884

    Article  Google Scholar 

  84. Phillips T, Chase M, Wagner S et al (2013) Use of in situ solid-phase adsorption in microbial natural product fermentation development. J Ind Microbiol Biotechnol 40:411–425

    Article  CAS  Google Scholar 

  85. Dafoe JT, Daugulis AJ (2014) In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol Lett 36:443–460

    Article  CAS  Google Scholar 

  86. Jae Jong K, Si Kyu L, Mi Ok L et al (2009) Method of extraction and yield-up of tricyclo compounds by adding a solid adsorbent resin as their carrier in fermentation medium

  87. Fam H, Daugulis AJ (2012) Substrate mass transport in two-phase partitioning bioreactors employing liquid and solid non-aqueous phases. Bioprocess Biosyst Eng 35:1367–1374. https://doi.org/10.1007/s00449-012-0725-1

    Article  CAS  PubMed  Google Scholar 

  88. Dafoe JT, Daugulis AJ (2013) Manipulating the composition of absorbent polymers affects product and by-product concentration profiles in the biphasic biotransformation of indene to cis-1,2-indandiol. Biochem Eng J 77:7–14. https://doi.org/10.1016/j.bej.2013.04.018

    Article  CAS  Google Scholar 

  89. Parent JS, Capela M, Dafoe JT, Daugulis AJ (2012) A first principles approach to identifying polymers for use in two-phase partitioning bioreactors. J Chem Technol Biotechnol 87:1059–1065. https://doi.org/10.1002/jctb.3760

    Article  CAS  Google Scholar 

  90. Mihal M, Markoš J, Annus J, Štefuca V (2012) Intensification of 1-phenylethanol production by periodical membrane extraction of the product from fermentation broth. J Chem Technol Biotechnol 87:1017–1026. https://doi.org/10.1002/jctb.3725

    Article  CAS  Google Scholar 

  91. Separel degasification and aeration. https://www.separel.com/en/technology/. Accessed 9 March 2020

  92. Salter GJ, Kelt DB (1995) Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139–177. https://doi.org/10.3109/07388559509147404

    Article  CAS  PubMed  Google Scholar 

  93. Barski P, Kowalczyk J, Lindstaedt A et al (2012) Evaluation of solid phase extraction for downstream separation of propane-1,3-diol and butan-1-ol from fermentation broth. Process Biochem 47:1005–1010. https://doi.org/10.1016/j.procbio.2012.03.013

    Article  CAS  Google Scholar 

  94. Bi W, Zhou J, Row KH (2011) Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids. Talanta 83:974–979. https://doi.org/10.1016/j.talanta.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  95. Wei G, Yang X, Zhou W et al (2009) Adsorptive bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003. Biochem Eng J 47:127–131. https://doi.org/10.1016/J.BEJ.2009.07.016

    Article  CAS  Google Scholar 

  96. Wainaina S, Parchami M, Mahboubi A et al (2019) Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol 274:329–334. https://doi.org/10.1016/j.biortech.2018.11.104

    Article  CAS  PubMed  Google Scholar 

  97. Riis T, Bauer-Brandl A, Wagner T, Kranz H (2007) pH-independent drug release of an extremely poorly soluble weakly acidic drug from multiparticulate extended release formulations. Eur J Pharm Biopharm 65:78–84. https://doi.org/10.1016/j.ejpb.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  98. NCBI (2019) 8-Prenylnaringenin. https://pubchem.ncbi.nlm.nih.gov/compound/480764#section=Computed-Properties. Accessed 30 Sep 2019

  99. PhytoHub (2019) 8-Prenylnaringenin. https://phytohub.eu/entries/PHUB000373. Accessed 3 Jan 2018

  100. Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26. https://doi.org/10.1038/ja.2005.1

  101. Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev 101:89–98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Flemish Agency Flanders Innovation and Entrepreneurship (VLAIO Grant Number 2016.0224).

Author information

Authors and Affiliations

Authors

Contributions

EM wrote the manuscript with support and supervision from WV. All authors proofread and approved the manuscript.

Corresponding author

Correspondence to Willy Verstraete.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moens, E., Bolca, S., Possemiers, S. et al. A Wake-Up Call for the Efficient Use of the Bacterial Resting Cell Process, with Focus on Low Solubility Products. Curr Microbiol 77, 1349–1362 (2020). https://doi.org/10.1007/s00284-020-01959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01959-8

Navigation