Skip to main content
Log in

Draft Genome Sequence of Thermophilic Bacillus sp. TYF-LIM-B05 Directly Producing Ethanol from Various Carbon Sources Including Lignocellulose

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus sp. TYF-LIM-B05, which is isolated from spoilage vinegar, is resistant to high temperature, high concentrated alcohol, acid, and salt, and can produce ethanol from mono-, di-, polysaccharide, and complex biomass as the sole carbon source. Thus, this strain is a potential candidate for consolidated bioprocessing (CBP) of fermenting lignocellulose to ethanol in a single step. To provide insight into the key enzymes involved in lignocellulose degradation and ethanol production, a draft genome of TYF-LIM-B05 was developed in this study. The results indicated that 348 genes are related to carbohydrate transport and metabolism according to the clusters of orthologous groups of proteins and annotated 187 CAZy domains from a total of 61 different families. The presence of genes encoding laccases, quinone oxidoreductases/reductases, and aryl-alcohol dehydrogenases further implies that TYF-LIM-B05 has the potential to degrade lignin. Remarkably, this strain has the ability to catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA by pyruvate dehydrogenase complexes. The genomic information provided in this study will help researchers to better understand the mechanisms of the lignocellulose degradation and ethanol production pathway in thermophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J (2012) Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK17. Biotechnol Bioeng 109(3):686–694. https://doi.org/10.1002/bit.24346

    Article  CAS  PubMed  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  3. Andlar M, Rezic T, Mardetko N, Kracher D, Ludwig R, Santek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18(11):768–778. https://doi.org/10.1002/elsc.201800039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sustain Energy Rev 51:699–717. https://doi.org/10.1016/j.rser.2015.06.050

    Article  CAS  Google Scholar 

  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37(6):1117–1129. https://doi.org/10.1007/s10529-015-1779-3

    Article  CAS  PubMed  Google Scholar 

  7. Boch J, Nau-Wagner G, Kneip S, Bremer E (1997) Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168(4):282–289

    Article  CAS  PubMed  Google Scholar 

  8. Currie DH, Raman B, Gowen CM, Tschaplinski TJ, Land ML, Brown SD, Covalla SF, Klinge-man DM, Yang ZK, Engle NL, Johnson CM, Rodriguez M, Shaw AJ, Kenealy WR, Lynd LR, Fong SS, Mielenz JR, Davison BH, Hogsett DA, Herring CD (2015) Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Syst Biol 9(1):30. https://doi.org/10.1186/s12918-015-0159-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2(1):1–15. https://doi.org/10.1186/1754-6834-2-12

    Article  CAS  Google Scholar 

  10. Eram MS, Ma K (2013) Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 3(3):578–596. https://doi.org/10.3390/biom3030578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ezeilo UR, Zakaria II, Huyop F, Wahab RA (2017) Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol Biotechnol Equip 31(4):647–662. https://doi.org/10.1080/13102818.2017.1330124

    Article  CAS  Google Scholar 

  12. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140. https://doi.org/10.1093/nar/gkn766

    Article  CAS  PubMed  Google Scholar 

  13. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. https://doi.org/10.1093/nar/gkm360

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hsiao W, Wan I, Jones SJ, Brinkman FSL (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420. https://doi.org/10.1093/bioinformatics/btg004

    Article  PubMed  Google Scholar 

  15. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280. https://doi.org/10.1093/nar/gkh063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15(9):4950–4962. https://doi.org/10.1016/j.rser.2011.07.058

    Article  CAS  Google Scholar 

  17. Laurent CVFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C (2019) Interaction between cellobiose dehydrogenase and lytic polysaccharide monooxygenase. Biochemistry 58(9):1226–1235. https://doi.org/10.1021/acs.biochem.8b01178

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714. https://doi.org/10.1093/bioinformatics/btn025

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272. https://doi.org/10.1101/gr.097261.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim HJ, Lee EH, Yoon Y, Chua B, Son A (2016) Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J Appl Microbiol 120(2):379–387. https://doi.org/10.1111/jam.13011

    Article  CAS  PubMed  Google Scholar 

  21. Ma K, Loessner H, Heider J, Johnson MK, Adams MW (1995) Effects of elemental sulfuron the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. J Bacteriol 177(16):4748–4756. https://doi.org/10.1128/jb.177.16.4748-4756.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20(3):372–380. https://doi.org/10.1016/j.copbio.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  23. Mistry FR, Cooney CL (1989) Production of ethanol by Clostridium thermosaccharolyticum: I. Effect of cell recycle and environmental parameters. Biotechnol Bioeng 34(10):1295–1304. https://doi.org/10.1002/bit.260341008

    Article  CAS  PubMed  Google Scholar 

  24. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(13):1713–1713. https://doi.org/10.1093/bioinformatics/btp326

    Article  CAS  PubMed Central  Google Scholar 

  25. Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energy Rev 80:330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evolut 4(4):406–442. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  27. Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by Thermophilic Bacteria. Energies 8(1):1–30. https://doi.org/10.3390/en8010001

    Article  CAS  Google Scholar 

  28. Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M (2017) Cellulosic ethanol productionvia consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Hima-layan hot spring. Biotechnol Biofuels 10(1):73. https://doi.org/10.1186/s13068-017-0756-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH (2010) Comparative genomics of the m-esophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel product-ion via consolidated bioprocessing. Environ Technol 31(8–9):889–903. https://doi.org/10.1080/09593330.2010.490856

    Article  CAS  PubMed  Google Scholar 

  30. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27(7):398–405. https://doi.org/10.1016/j.tibtech.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  31. Velasco-Garcia R, Villalobos M, Ramirez-Romero M, Mujica-Jimenez C, Iturriaga G, Munoz-Clares R (2006) Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt. Arch Microbiol 185(1):14–22. https://doi.org/10.1007/s00203-005-0054-8

    Article  CAS  PubMed  Google Scholar 

  32. Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128(4):343–348. https://doi.org/10.1007/bf00405910

    Article  CAS  Google Scholar 

  33. Witzmann S, Bisswanger H (1998) The pyruvate dehydrogenase complex from thermophilic organisms: thermal stability and re-association from the enzyme components. Biochim Biophys Acta 1385(2):341–352. https://doi.org/10.1016/s0167-4838(98)00078-8

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Taiyuan Ninghuafu Yiyuanqing Vinegar Industry for providing spoilage vinegar samples. This study was funded by the Foundation of Shanxi Province (Grant Nos. 20180008, 201703D121044).

Nucleotide Sequence Accession Number

The whole genome sequencing has been deposited at GenBank under the accession no.QXII00000000. The version described in this paper is QXII00000000.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Fan or Yuxiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Li, M., Li, Y. et al. Draft Genome Sequence of Thermophilic Bacillus sp. TYF-LIM-B05 Directly Producing Ethanol from Various Carbon Sources Including Lignocellulose. Curr Microbiol 77, 491–499 (2020). https://doi.org/10.1007/s00284-019-01833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01833-2

Navigation