Skip to main content
Log in

cAMP Receptor Protein of Salmonella enterica Serovar Typhimurium Modulate Glycolysis in Macrophages to Induce Cell Apoptosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We studied the role of glycolysis in the mechanism of cAMP receptor protein-induced macrophage cell death of Salmonella enterica serovar Typhimurium (S. Typhimurium). Cell apoptosis, caspase-3, -8, -9 enzyme activity, and pyruvic acid, lactic acid, ATP, and hexokinase (HK) contents were determined after infection of macrophages with S. Typhimurium SL1344 wild-type and a cAMP receptor protein mutant strain. While cell apoptosis, caspase-3, -8, -9 enzyme activity, lactic acid, hexokinase, and ATP levels significantly changed by infection with crp mutants compared to the wild-type strain (P < 0.05). Our data suggest that the cAMP receptor protein of S. Typhimurium can modulate macrophage death by effecting glycolysis levels. This finding may help to elucidate the mechanisms of S. Typhimurium pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang M, Feng P, Chen X, Zhang H, Ni B, Xie X, Du H (2014) YgaE regulates out membrane proteins in Salmonella enterica serovar Typhi under hyperosmotic stress. Sci World J 2014:374276

    Google Scholar 

  2. Detweiler CS, Cunanan DB, Falkow S (2001) Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA 98(10):5850–5855

    Article  CAS  PubMed  Google Scholar 

  3. Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401(6755):804–808

    Article  CAS  PubMed  Google Scholar 

  4. Bacci G, Capanna R, Orlandi M, Mancini I, Bettelli G, Dallari D, Campanacci M (1985) Prognostic significance of serum lactic acid dehydrogenase in Ewing’s tumor of bone. La Ric Clin Lab 15(1):89–96

    CAS  Google Scholar 

  5. Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163(5):1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santos RL, Tsolis RM, Baumler AJ, Smith R 3rd, Adams LG (2001) Salmonella enterica serovar Typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB-independent mechanisms. Infect Immun 69(4):2293–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wijburg OL, Van Rooijen N, Strugnell RA (2002) Induction of CD8+ T lymphocytes by Salmonella Typhimurium is independent of Salmonella pathogenicity island 1-mediated host cell death. J Immunol 169(6):3275–3283

    Article  CAS  PubMed  Google Scholar 

  8. Huang SW, Kao JK, Wu CY, Wang ST, Lee HC, Liang SM, Chen YJ, Shieh JJ (2014) Targeting aerobic glycolysis and HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer cells. Oncotarget 5(5):1363–1381

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kok SH, Hou KL, Hong CY, Chao LH, Hsiang-Hua Lai E, Wang HW, Yang H, Shun CT, Wang JS, Lin SK (2015) Sirtuin 6 modulates hypoxia-induced apoptosis in osteoblasts via inhibition of glycolysis: implication for pathogenesis of periapical lesions. J Endodont 41(10):1631–1637

    Article  Google Scholar 

  10. Liu Y, Tong L, Luo Y, Li X, Chen G, Wang Y (2018) Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J Cell Biochem 119(7):6162–6172

    Article  CAS  PubMed  Google Scholar 

  11. Zhou J, Li C, Yao W, Ma A, Huo L, Liu H, Miao YL (2018) Hypoxia-inducible factor-1alpha-dependent autophagy plays a role in glycolysis switch in mouse granulosa cells. Biol Reprod 99(2):308–318

    Article  Google Scholar 

  12. Hui L, Zhang J, Guo X (2018) MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother 103:1194–1201

    Article  CAS  PubMed  Google Scholar 

  13. Sanman LE, Qian Y, Eisele NA, Ng TM, van der Linden WA, Monack DM, Weerapana E, Bogyo M (2016) Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5:e13663

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bowden SD, Rowley G, Hinton JC, Thompson A (2009) Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun 77(7):3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy JN, Durbin KJ, Saltikov CW (2009) Functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3. J Bacteriol 191(3):1035–1043

    Article  CAS  PubMed  Google Scholar 

  16. Shimada T, Fujita N, Yamamoto K, Ishihama A (2011) Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE 6(6):e20081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basak S, Geng H, Jiang R (2014) Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 173:68–75

    Article  CAS  PubMed  Google Scholar 

  18. Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z (2015) Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 199:55–61

    Article  CAS  PubMed  Google Scholar 

  19. Basak S, Jiang R. Enhancing (2012) E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS ONE 7(12):e51179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen ZW, Hsuan SL, Liao JW, Chen TH, Wu CM, Lee WC, Lin CC, Liao CM, Yeh KS, Winton JR, Huang C, Chien MS (2010) Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system. Vet Res 41(1):5

    Article  CAS  PubMed  Google Scholar 

  21. Chen S, Zhang C, Liao C, Li J, Yu C, Cheng X, Yu Z, Zhang M, Wang Y (2015) Deletion of invasion protein B in Salmonella enterica serovar Typhimurium influences bacterial invasion and virulence. Curr Microbiol 71(6):687–692

    Article  CAS  PubMed  Google Scholar 

  22. Liao C, Cheng X, Zhao Z, Zhang C, Li Y, Wu T, Yu C, Wang X, Hu A (2011) Construction and characterzation of the cAMP receptor protein gene deletion mutant of Salmoella Typhimurium SL1344 strain. Chin J Vet Sci 31(12):1711–1716

    CAS  Google Scholar 

  23. Zhang H, Huang Y, Du Q, Luo X, Zhang L, Zhao X, Tong D (2015) Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway. Biochem Biophys Res Commun 456(2):649–655

    Article  CAS  PubMed  Google Scholar 

  24. Berger AK, Danthi P (2013) Reovirus activates a caspase-independent cell death pathway. mBio 4(3):e00178–e00113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding L, Huang Y, Du Q, Dong F, Zhao X, Zhang W, Xu X, Tong D (2014) TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling. Biochem Biophys Res Commun 445(2):497–503

    Article  CAS  PubMed  Google Scholar 

  26. Akhter Y, Yellaboina S, Farhana A, Ranjan A, Ahmed N, Hasnain SE (2008) Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis. Gene 407(1–2):148–158

    Article  CAS  PubMed  Google Scholar 

  27. Xue J, Tan B, Yang S, Luo M, Xia H, Zhang X, Zhou X, Yang X, Yang R, Li Y, Qiu J (2016) Influence of cAMP receptor protein (CRP) on bacterial virulence and transcriptional regulation of allS by CRP in Klebsiella pneumoniae. Gene 593(1):28–33

    Article  CAS  PubMed  Google Scholar 

  28. Cook P, Totemeyer S, Stevenson C, Fitzgerald KA, Yamamoto M, Akira S, Maskell DJ, Bryant CE (2007) Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif. Immunology 122(2):222–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gunster RA, Matthews SA, Holden DW, Thurston TL (2017) SseK1 and SseK3 type III secretion system effectors inhibit NF-kappaB signaling and necroptotic cell death in Salmonella-infected macrophages. Infect Immun 85(3):IAI-00010

    Article  Google Scholar 

  30. He P, Wu S, Chu Y, Yang Y, Li Y, Huang R (2012) Salmonella enterica serovar Typhi plasmid pR ST98 enhances intracellular bacterial growth and S. typhi-induced macrophage cell death by suppressing autophagy. Braz J Infect Dis 16(3):262–266

    PubMed  Google Scholar 

  31. Kurita A, Gotoh H, Eguchi M, Okada N, Matsuura S, Matsui H, Danbara H, Kikuchi Y (2003) Intracellular expression of the Salmonella plasmid virulence protein, SpvB, causes apoptotic cell death in eukaryotic cells. Microb Pathog 35(1):43–48

    Article  CAS  PubMed  Google Scholar 

  32. Thurston TL, Matthews SA, Jennings E, Alix E, Shao F, Shenoy AR, Birrell MA, Holden DW (2016) Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nat Commun 7:13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ou Q, Fan J, Duan D, Xu L, Wang J, Zhou D, Yang H, Li B (2017) Involvement of cAMP receptor protein in biofilm formation, fimbria production, capsular polysaccharide biosynthesis and lethality in mouse of Klebsiella pneumoniae serotype K1 causing pyogenic liver abscess. J Med Microbiol 66(1):1–7

    Article  PubMed  Google Scholar 

  34. Zhao X, Liu Q, Xiao K, Hu Y, Liu X, Li Y, Kong Q (2016) Identification of the crp gene in avian Pasteurella multocida and evaluation of the effects of crp deletion on its phenotype, virulence and immunogenicity. BMC Microbiol 16(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, Jung JU, Gao SJ (2016) An oncogenic virus promotes cell survival and cellular transformation by suppressing glycolysis. PLoS Pathog 12(5):e1005648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tchawa Yimga M, Leatham MP, Allen JH, Laux DC, Conway T, Cohen PS (2006) Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74(2):1130–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hos NJ, Ganesan R, Gutierrez S, Hos D, Klimek J, Abdullah Z, Kronke M, Robinson N (2017) Type I interferon enhances necroptosis of Salmonella Typhimurium-infected macrophages by impairing antioxidative stress responses. J Cell Biol 216(12):4107–4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Grant 31572489), the HeNan Natural Science Foundation (182300410078), and the National Key R&D Program (2016YFD0500708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Zhang.

Ethics declarations

Conflict of interest

The authors or their institution do not have any relationships that may influence or bias the results and data presented in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Zhang, C., Li, J. et al. cAMP Receptor Protein of Salmonella enterica Serovar Typhimurium Modulate Glycolysis in Macrophages to Induce Cell Apoptosis. Curr Microbiol 76, 1–6 (2019). https://doi.org/10.1007/s00284-018-1574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1574-1

Navigation