Skip to main content

Advertisement

Log in

Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Nucleoside hydrolase and sterol 24-c-methyltransferase, two antigenic proteins of Leishmania sp., were expressed in Aspergillus niger. Genetic transformation of conidia was achieved using underwater shock waves. scFv antibody addressed to DEC205, a receptor of dendritic cells, was fused to two proteins of Leishmania sp. Receptor 205 has a relevant role in the immune system in mammals; it can modulate T cell response to different antigens. Extracellular expression strategy of recombinant antibody was achieved using a fragment of native glucoamylase A (514 aa) as a carrier. Fermentations in shake flasks showed that the recombinant protein (104 kDa) was expressed and secreted only when maltose was used as carbon source; on the contrary, the expression was highly repressed in presence of xylose. Noteworthy, recombinant protein was secreted without glucoamylase-carrier and accumulation at intracellular level was not observed. The results presented here demonstrate the high value of Aspergillus niger as biotechnological platform for recombinant antibodies against Leishmania sp. at low cost. To the best of our knowledge, this is the first report about the recombinant expression of antigenic proteins of Leishmania sp. in filamentous fungi. The protein obtained can be used to explore novel strategies to induce immunity against Leishmania sp. or it can be employed in diagnostic kits to detect this neglected disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alves-Silva MV, Nico D, Morrot A, Palatnik M, Palatnik-de-Sousa CB (2017) A chimera containing CD4+ and CD8+ T-cell epitopes of the Leishmania donovani nucleoside hydrolase (NH36) optimizes cross-protection against Leishmania amazonesis infection. Front Immunol 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bagirova M, Allahverdiyev AM, Abamor ES, Ullah I, Cosar G, Aydogdu M, Senturk H, Ergenoglu B (2016) Overview of dendritic cell-based vaccine development for leishmaniasis. Parasite Immunol 38:651–662

    Article  CAS  PubMed  Google Scholar 

  3. Coconi-Linares N, Ortega-Dávila E, López-González M, García-Machorro J, García-Cordero J, Steinman RM, Cedillo-Barrón L, Gómez-Lim MA (2013) Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 31:2366–2371

    Article  CAS  PubMed  Google Scholar 

  4. Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duthie MS, Favila M, Hofmeyer KA, Tutterrow YL, Reed SJ, Laurance JD, Picone A, Guderian J, Bailor HR, Vallur AC, Liang H (2016) Strategic evaluation of vaccine candidate antigens for the prevention of visceral leishmaniasis. Vaccine 34:2779–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engwerda CR, Ato M, Kaye PM (2004) Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol 20:524–530

    Article  CAS  PubMed  Google Scholar 

  7. Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT (1997) Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res Immunol 149:589–599

    Article  Google Scholar 

  8. Goto Y, Bogatzki LY, Bertholet S, Coler RN, Reed SG (2007) Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine 25:7450–7458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11

    Article  CAS  PubMed  Google Scholar 

  10. Gurung P, Kanneganti TD (2015) Innate immunity against Leishmania infections. Cell Microbiol 17:1286–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. James ER, Van Zyl WH, Van Zyl PJ, Görgens JF (2012) Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase. Appl Microbiol Biotechnol 96:385–394

    Article  CAS  PubMed  Google Scholar 

  12. Joosten V, Gouka RJ, Van Den Hondel CA, Verrips CT, Lokman BC (2005) Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392

    Article  CAS  PubMed  Google Scholar 

  13. Kaminskyj SG (2001) Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans. Fungal Genet Rep 48:25–31

    Article  Google Scholar 

  14. León B, López-Bravo M, Ardavín C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531

    Article  PubMed  Google Scholar 

  15. Loske AM (2017) Medical and biomedical applications of shock waves. Springer, Cham

    Book  Google Scholar 

  16. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  CAS  PubMed  Google Scholar 

  17. Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16

    Article  PubMed  Google Scholar 

  18. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  19. Matos I, Mizenina O, Lubkin A, Steinman RM, Idoyaga J (2013) Targeting Leishmania major antigens to dendritic cells in vivo induces protective immunity. PLoS ONE 8:e67453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nico D, Claser C, Borja-Cabrera GP, Travassos LR, Palatnik M, da Silva Soares I, Rodrigues MM, Palatnik-de-Sousa CB (2010) Adaptive immunity against Leishmania nucleoside hydrolase maps its C-terminal domain as the target of the CD4+ T cell–driven protective response. PLoS Negl Trop Dis 4:e866

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ohl SD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubble. Phys Rev Lett 90:214502.1–214502.4

    Article  Google Scholar 

  22. Okazaki F, Aoki JI, Tabuchi S, Tanaka T, Ogino C, Kondo A (2012) Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol 96:81–88

    Article  CAS  PubMed  Google Scholar 

  23. Peters NC, Kimblin N, Secundino N, Kamhawi S, Lawyer P, Sacks DL (2009) Vector transmission of Leishmania abrogates vaccine-induced protective immunity. PLoS Pathog 5(6):e1000484

    Article  PubMed  PubMed Central  Google Scholar 

  24. Plüddemann A, van Zyl WH (2003) Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet 43:439–446

    Article  PubMed  Google Scholar 

  25. Punekar NS, Suresh Kumar SV, Jayashri TN, Anuradha R (2003) Isolation of genomic DNA from acetone-dried Aspergillus mycelia. Fungal Genet News 50:15–16

    Google Scholar 

  26. Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CA, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    Article  CAS  PubMed  Google Scholar 

  27. Steinman RM (2008) Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29:319–324

    Article  CAS  PubMed  Google Scholar 

  28. Tsagozis P, Karagouni E, Dotsika E (2014) Dendritic cells pulsed with peptides of gp63 induce differential protection against experimental cutaneous leishmaniasis. Int J Immunopathol Pharmacol 17:343–352

    Article  Google Scholar 

  29. Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ma. Concepción Arredondo, René Preza and Guillermo Vázquez for technical assistance. D.M.O. gratefully acknowledges the support of a Ph.D. scholarship (Number 219950) from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim M. Loske.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaña-Ortíz, D., Fernández, F., Loske, A.M. et al. Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens. Curr Microbiol 75, 40–48 (2018). https://doi.org/10.1007/s00284-017-1348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1348-1

Navigation